m AR ERAE AR
B SHFE PR

Formal Method is Working
The Formal Development of VMK
-An Operatlng System Kernel

S
Ming-Yuan Zhu
CoreTek Systems.

June 2009

HNKRABIES ¢
| htttp://Iwww.esbf.org.cn A\l
4 FRT

(] emExeszs
B

Introduction

«*Introduction

«+Proof Development System - PowerEpsilon
«»Proof Structure

“+Functional Specification

«High-Level Design and Abstract Machine
“+Conclusions

Dream Practical?

Instead of debugging a program, one should prove
that it meets its specifications, and this proof
should be checked by a computer program.

John McCarthy,

“A Basisfor aMathematical Theory
of Computation,”

1961

ness Problems of

ndamental Questions

« Fundamental questionsin physical science:
What is the nature of matter? What is the basis
and origin of organic life?

« Fundamental questions in computer science:
What is an algorithm? What can and what
cannot be computed? When should an
algorithm be considered practicaly feasible?

« Fundamental questionsin operating systems:
What isan OS? How isan OSimplemented?
What constitute a safe, reliable and efficient
0s?

i - F O peraﬂ%tems
NWhy software are always incorrect?
«Why most of commercial OSes are always
incorrect?
«*How to make a correct program?
= Debugging?
= Testing?
= Or whatever?

e i ¥A Classification
EKADAK /R uceonse ~EEEEEE GMSARE 0] Wt 100

< The Market Proven Operating Systems: Those operating systems
have been in market for over 10-15 years and have been used in
many safety-critical applications. They are therefore tested by the
customers for along time and many errors have been found and
fixed. Thiskind of operating systems include pSOSystem,
VxWorks and VRTX. However, this does not mean that these
operating systems are safe and reliable.

< The Certificated Operating Systems: Those operating systems have
been validated by some internationally recognized organizations
through avery systematic verification and validation approach. This
kind of operating system includes OSE, Adaand Integrity 178B.

< The Provably Correct Operating Systems: The operating system
which has been proven to be correct against aformal specification.

B o e oo @ [Svindwe

ow Do We Know It Works?

portance and Feasibility

« Anembedded RTOS is so
important that it is
necessary to proveits
correctness.

% An embedded RTOS
kernel isso small that it is
possible to prove its
correctness.

“We can test it?
«*We can monitor its development process?
“*We can proveit!

DO-178B (DO-254) Softwar e/System Assurance L evels @

» Level A: Catastrophic Failure Protection
“ Level B: Hazar dous/Sever e Failure Protection
< Level C: Major Failure Protection
< Level D: Minor Failure Protection
 Level E: Minimal Failure Protection

mmon Criteria Ev: ion Assur L
% EAL 7: Formally Verified Design and Tested
% EAL 6: Semi-formally Verified Design and Tested
% EAL 5; Semi-formally Designed and Tested
% EAL 4 Methodically Designed, Tested and Reviewed
* EAL 3: Methodically Tested and Checked
> EAL 2 Structurally Tested
% EAL 1: Functionally Tested

eria Evaluation Levels

Common | Requirements | Functional HLD LLD Implementation
Criteria Specification
EAL 1 Informal Informal Informal | Informal Informal

EAL2 Informal Informal Informal | Informal Informal
EAL3 Informal Informal Informal | Informal Informal
EAL4 Informal Informal Informal | Informal Informal
EALS Formal Semiformal | Semiformal | Informal Informal
EALG Formal Semiformal | Semiformal | Semiformal Informal
EALT Formal Formal Formal | Semiformal Informal
Verified Formal Formal Formal Formal Formal

Proof Development
System -
Power Epsilon T —

o

gut U;IUIUL L
rnnfnfntInatA4nt DN

PowerEpsilon

« A strongly-typed polymorphic functional
programming language based on Martin-Lof‘s Type
Theory and Calculus of Constructions.

«+ The concept of type universe hierarchies and a
scheme for inductive defined types are introduced.

¢+ The system can be used as both a programming
language with avery rich set of data structures and a
meta-language for formalizing constructive
mathematics.

¢+ The system has been implemented using the
software development system AUTOSTAR.

Does the system
have property X?

Engineer Properties

I | Specification
| in PowerEpsilon
| X

in PowerEpsilon

‘ -¥Natural Induction Rule

dec Nat | nduction :
"(P: [Nat -> Prop])
[@p, @ ->

"(m: Nat) [@P, M -> @P, @SS, m)] ->

"(n: Nat) @P, n)];

heory - Leibniz's Equality

- dec REFLEX :
theory Equal is " (A Type(0),
R: [A->A->Prop], x : A)
@R x, X);
def Equal =
| A: T e(0 s dec SYMV :
(ype(0) (AT Type(0),
X A

R: [A->A->Prop],
y: A X: A YA

“(P: [A-> Prop]) (@R x, y) -> @R y. 0]
[@p, x) ->@Pp, y)l

dec TRANS :

"(A ' Type(0),
R: [A->A-> Prop],
end; Xt A YAz A

[@R x, y) -> @R y, 2) -> @R x 2)]

Proof
Structure

| unquluu‘t'ULE}n ‘l';

1001101 10R104N1

Specification Development i .. YProof Structure

CVMK Programs =

C Programs
Refinement, Refinement,
1 [ificatior !
| 1 L
RefineEq, RefineEq CVMKCompEqCond | | CTMCompEqCond ‘ | CCompEqCond |
2
Refinement, ;
—
RefineEq,, ; TMX86EqCond
TM Codes X86 Codes

Source Languages and Semantics r ¥€VMK and C Semantic Equivalence
dec CVMKStEquiv : [CVMKState -> CState -> Prop];

% - CVMK Source Prograns --%

dec CVMKProgram : Prop; dec CVMK2CTran : [CYMKProgram -> CPrograni;
% - C Source Programs --%
def CVMKSenEquiv =

I (pl : CYMKProgram p2 : CProgram
%- CVMK Semantics --% let cl1 = @CVWKProgSEM pl),
dec CVMWKState : Prop; €2 = @CProgSEM p2) in
"(z1 : CYMKState, z2 : CState)

[@ CVWKSt Equi v, z1, z2) ->
%- C Semantics --% @CVMKSt Equi v, @cl, z1), @c2, z2))];
dec CState : Prop;

dec CProgram: Prop;

dec CVMKProgSEM : [CVMKProgram -> CVMKState -> CVMKSt ate] ;

dec CProgSEM: [CProgram-> CState -> CState];

Semantics of Target Codes

%- TM Target Instructions --%

dec TMnstr : Prop; % - Sermantics of TM Target Codes --%

def TMnstrList = @List, TMnstr); dec TMSem: [TMnstrList -> TMState -> TMstate];

%- TM Target Machines --% % - Semantics of X86 Target Codes --%

dec TMBtate : Prop; dec X86Sem: [X86lnstrList -> X86State -> X86State];

% - X86 Target Instructions --%
dec X86lnstr : Prop; -
def X86InstrList = @List, X86lnstr); % - TM and X86 Target Equival ence --%

dec TMEQuiv : [TMState -> X86State -> Prop];

% - X86 Target Machines --%
dec X86State : Prop;

guivalence of CVMK and

%- CVMK to TM Conpilers --%

dec CVMKConpiler : [CVMKProgram-> TMnstrlList];
%- Cto X86 Conpilers --%

dec CConpiler : [CProgram-> X86lnstrlList];

%- Cto TM Conpilers --%

dec C2TMConpiler : [CProgram-> TMnstrlList];

% - TM Loader --%

dec TMoad : [TMnstrlList -> TMState -> TMState];
% - X86 Loader --%

dec X86Load : [X86lnstrList -> X86State -> X86State];

dec CUNKTMBLEquiv : [CVMKState -> ThBtate -> Prop];

def CVMKCompEqCond =
I(p: CVMKProgram q : TMnstrlList)
let cl = @CVMKProgSEM p),
c2 = @TMoad, q) in
"(z1: CVMKState, z2 : TMState)
[@CVMKTMBL Equi v, z1, 2z2) -> @CVNKTMBtEquiv, @cl, z1), @c2, z2))];

def CVMKConpEquiv =
I(p : CVMKProgranm) @ CVMKConpEqCond, p, @ CVMKConpiler, p));

dec CVMKConpEqThm :
“(p : CVMKProgram
$(q : TMnstrlist) @CVMKConpEqCond, p, q);

dec CVMKConpEqThn® :
$(f : [CYMKProgram-> TMnstrList])
“(p : CVMKProgram) @ CVMKConpEqCond, p, @f, p)):

YSemantic Equivalence of C and TM

YSemantic Equivalence of C and X86

dec CTMBtEquiv : [CState -> TMState -> Prop];

def CTMConpEqCond =
I(p: CProgram q : TMnstrlList)
let c1 = @CProgSEM p),
c2 = @TMoad, q) in
"(z1 : CState, z2 : TMBtate)
[@CTMBt Equi v, z1, z2) -> @CTMBtEquiv, @cl, z1), @c2, z2))];

def CTMConpEquiv = I(p : CProgram) @ CTMConpEqCond, p, @ C2TMConpiler, p));

dec CTMConpEQThm :
“(p: CProgram) $(q : TMnstrList) @CTMConpEqCond, p, q);

dec CTMConpEqThng :
$(f : [CProgram -> TMnstrList])
"(p : CProgram) @CTMConpEqCond, p, @f, p));

dec CX86StEquiv : [CState -> X86State -> Prop];

def CConpEqCond =
I(p: CProgram g : X86lnstrList)
let c1 = @CProgSEM p), c2 = @X86Load, q) in
"(z1 : CState, z2 : X86State)
[@ CX86St Equi v, z1, z2) ->
@CX86St Equiv, @cl, zl), @c2, z2))];

def CConpEquiv =
I(p : CProgram) @ CConpEqCond, p, @CConpiler, p));
dec CConpEqThm :

"(p : CProgram
$(q : X86lnstrList) @CConpEqCond, p, q);

¥Semantic Equivalence of TM and X86

dec TM2X86Tran : [TMnstrList -> X86lnstrList];
dec TMX86StEquiv : [TMState -> X86State -> Prop];

def TMX86EqCond =
I(g: TMnstrList, r : X86lnstrlList)
let c1 = @TMsem q),
c2 = @X86Sem r) in
"(z1 : TMState, z2 : X86State)
[@ TMX86St Equi v, z1, z2) ->
@TMX86St Equi v, @cl, z1), @c2, z2))];

def CVMKPr X86EqCondl =
I(p : CVMKProgram
q : TMnstrlList,
r : X86lnstrlList)
@ And,
@ CVMKConpEqCond, p, q),
@ TMX86EqCond, q, r));

dec CVMKPr X86EqThml :
“(p : CVMKProgram
$(q : TMnstrList, r : X86lnstrList)
@ CVMKPr X86EqCondl, p, q, r);

Semantic Equivalence of CVMK

iand X8 Through C

def CVIMKPr X86EqCond2 =
I (p : CVMKProgram
q : CProgram
r . X86lnstrlList)
@ And,

@ CVMKSenEqui v, p, g), @ CConpEqCond, q, r));

dec CVIKPr X86EqThn2 :
"(p : CVMKProgranm
$(gq : CProgram r : X86lnstrlList)
@ CVMKPr X86EqCond2, p, q, r);

ivalence of CVMK and

86 Through C and TM

def CVMKPr X86EqCond3 =
I(p : CVMKProgram
q : CProgram
t : TMnstrlList,
r : X86lnstrlList)
@And,
@ CVMKSenEqui v, p, Qq),
@And,
@ CTMConpEqgCond, ¢, t),
@ TMX86EqCond, t, r)));

dec CVMKPr X86EqThn8 :
"(p : CVMKProgram
$(q : CProgram t : TMnstrList, r : X86lnstrlList)
@ CVMKPr X86EqCond3, p, q, t, r)

3 LR
CET

Functional
Specifications

m u-,|U|uL|uu1'flia}}m
tnnta1Ing 1nA 10401 DAL L4

2artition-Based Architecture

old Standard for Partitioning

« A partitioned system should provide fault
containment equivalent to an idealized system in
which each partition is allocated an independent
processor and associated peripheras and al inter-
partition communications are carried on dedicated
lines.
= Partition:

« Spatial (processor, memory, resources)

« Temporal (processor cycles)
= The propagation of fault effectsis prevented
= Communication lines are independent

Temporal Partitioning

App 1 App 4

Module OS ARINC Ports ARINC Scheduler

Processor

Partition 1 ! Partition 2 Partition 3 Partition 1

Kysong

'
I
|
|

Process 2 !

|

I

|

! Process 1

Process 4

Time

Minor Frame

Mfor Frame

evels of Partitioning

eparation Kernel Condition

Partitions could have their own ‘copies’ of OS services:

Partition A | Partiton B Partition A | Partiton B
Operating System OS Services A| OS Services B
Kemel
Hardware Hardware
@ ®)
Alternative Operating System/Partitioning Designs

For agiven VMK state
z, for any vmcbl of
type VMCB, if vmcbl
iswell-defined in z, for | def Sepkernel Cond =
any address|, if | is I(z : VMKState)
well-defined inz and "[(éHESéB:InVN\C/Sl)(State vinecbl, z)
vmcb1, for any vmchb2 ¢ 0 i 2z

. (I VMKAddress)
NS, | AT

" (vrch2 @ VMCB

inzand !l iswell- [(@VNKB_In_VM)<Sta\e. vnch2, z) ->
definedinzandvmcbz, @Addr _In_VMCB, |, z, vnch2) ->
then vmcbl and vmch2 @Equal , VMCB, vntbl, vmcb2)]]];

areequal.

eparation Kernel Theorem

eparation Kernel

For any VMK state z and vmcbl of type VMCB, if vmcbl
iswell-defined in z, for any address|, if | is well-defined
inz and vmcebl, for any vmcb2 of type VMCB, if vmcb2
iswell-defined in z and | iswell-defined in z and vmcb2,
then vmcb1 and vmcb?2 are equal .

dec SepKer nel Thm :

"(z : VMKState) @ SepKernel Cond, z);

def SepKer nel Lem =
I(z : VWKState, vnthl : VMCB, p : @VMCB_In_VMKState, vnthl, z))
I (I : VMKAddress), q : @Addr_In_VMCB, |, z, vnthl), vnth2 : VMCB)
I(ql : @VMCB_In_VMKState, vnth2, z), q2 : @Addr_In_VMCB, |, z, vntb2))
let vnindexl = @ Get VMCBMenol ndex, vnthl),
vmi ndex2 = @ Get VMCBMenol ndex, vntb2) in
let addr_idx = @ GET_VMADDR I DX, 1),
addr_l oc = @ GET_VMKADDR LCC, 1) in
let vnch_idxl = @ Get VMCBMenol ndex, vntbl),
vich_i dx2 = @ Get VMOBMemol ndex, vich2) in
let P11 = @Equal, VMKMemolndex, addr_idx, vnch_idx1),
P12 = let nz = @SET_VMKST_IDX, z, addr_idx) in
let v = @GET, nz, addr_loc) in
@Not, @Equal, KSval, v, ERR KSVAL)),
P21 = @Equal, VMKMenol ndex, addr _idx, vntb_idx2),
P22 = let nz = @SET_VMKST_IDX, z, addr_idx) in
let v = @GET, nz, addr_loc) in
Not, @Equal, KSval, v, ERRKSVAL)) in
let pll = @PJ1, P11, P12, q), p2l = @PJ1, P21, P22, q2) in
let w= @Symm Eq, VMKMemol ndex, addr_idx, vmcb_idx1, pll) in
@Tran_Eq, VMKMenol ndex, vmcb_idx1, addr_idx, vmcb_idx2, w, p21);

def SepKernel Thm =
I(z : VMKState, vnchbl : VMCB, p : @VMCB_In_VMKState, vntbl, z))
I(l : VMKAddress, q : @Addr_In_VMCB, |, z, vnthl))
I (vrtcb2 : VMCB)
I(ql : @VMCB_In_VMKState, vnth2, z),
g2 : @Addr_In_VMCB, |, z, vntb2))
let P = @Equal, VMCB, vntbl, vntb2) in
let w= @ExcIMdRule, P) in

@ WHEN,
P,
@Not, P),
P,
w,
I(u: P) u,

I(u: @Not, P))
let vl = @Uni qVMCBI dxThni, z, vncbl, vncb2, p, q1, u),
v2 =

@vi, vz, P);

@SepKernel Lem z, vntbl, p, |, g, vncb2, ql, g2) in

High-Level Design
and Abstract

The Challenges

% System programs - especially those involving both
interrupts and concurrency - are extremely hard to
reason about.

«»Mixture of high-level and low-level programming
techniquesin OS devel opment.

«»Most difficult part: modeling of interrupt handling

«» Existing program verification techniques can probably
handle those high-level concurrent programs, but they
have consistently ignored the issues of interrupts thus
cannot be used to certify concurrent code in the OS
kernel code. Having both explicit interrupts and threads
creates the new challenges.

<At the “higher” abstraction level, we have threads that
follow the standard concurrent programming model:
interrupts are invisible, but the execution of athread
can be preempted by other threads; synchronization
operations are treated as primitives.

«»Below thislayer, we have more subtle “lower-level”
code involving both interrupts and concurrency. The
implementation of many synchronization primitives
and input/output operations requires explicit
manipulation of interrupts.

1structions of VMK-TM

+TM-1
= Instructions for Computing and Control
S TM-2
= Ingtructions for VMK Manager, VMCBs and
TTSCBs
= Instructions for Virtual Interruption Management
= Instructions for Scheduling
= Instructions for Location List

dec SAVE_CONTEXT : [TMState -> TMstate];

def SAVE_CONTEXT =
I(z : TMState)
let im= @GET_TMST_I MEM z),
dm= @GET_TMST_DMEM 7)),
rg = @GET_TMST_TMREG, 2),
st = @GET_TMBT_TMBREG, z),
io = @GET_TMST_TWECT, z),
m = @GET_TMST_VMKMAN, z) in
let old_vmloc = @GET_VMKMAN_RUNVM mm) in
let old_vm= @VMB_GET, z, old_vmloc) in
let vmstack = @ GetVMBIntContxt, old_vn),
nvmstack = @PUSH, TMReg, rg, vmstack) in
let new vm = @ Set VMCBI nt Contxt, ol d_vm nvmstack) in
@VMCB_SET, z, old_vmloc, new.vm;

def SV_CONT_SEM =
I(z : TMstate, r : Nat, s : Nat, t : Nat)
@ SAVE_CONTEXT, z);

Semantics of Context Switching

dec SWTCH CONTEXT : [TMtate -> ThBtate];

def SW TCH_CONTEXT =
I(z : Twmstate)
let im= @GET_TMBT_IMEM z), dm= @CGET_TMST_DVMEM 7).
rg = @GET_TMST_TMREG z), sg = @GET_TMST_TMBREG 7),
io = @GET_TMST_TWECT, z), m = @GET_TMST_VNKMAN, z) in
let run_vmloc = @GET_VMKMAN_ RUN\VM mm) in
let run_vm= @VMB_GET, z, run_vmloc) in
et nmenoidx = @ Get VMCBMenol ndex, run_vn),
cnstack = @ Get VMCBI nt Cont xt, run_vm in
let context = @TOP, TMReg, ERR TMREG cnstack),
ncnstack = @POP, TMReg, cnstack) in
let nrg =
@TMREG ASSI GN, context, SG REG @NAT2B32, menvidx)) in
let nrun_vm= @ Set VMCBI nt Contxt, run_vm ncnstack) in
let nz = @SET_TMST_TMREG, z, nrg) in
@VMCB_SET, 7, run_vmloc, nrun_vn;

def SW CONT_SEM =
I(z : Twstate, r : Nat, s : Nat, t : Nat)
@ SW TCH_CONTEXT, z);

Simulation Semantics of TM

def TARGET_NACHI NE =
I(z : TMBtate)
let im= @GET_TVMSTIMEM 2), dm= @GET_TMST_DMEM 2),
rg = @CET_TMST_TMREG z), st = @GET_TNST_TMBREG 2),
io = @CET_TMST_TW/ECT, z) in
let ie = @TMREG RETRIEVE, rg, |E_REG, ic = @TMREG RETRIEVE, rg, ICREG),
im= @TMREG RETRIEVE, rg, IMREG, ih = @TMREG RETRIEVE, rg, |HREQ),
sm = @TMREG RETRIEVE, rg, SGREG in
@G F_THEN ELSE, TMBtate, @I S_I NT_ENABLED, ie),
@G F_THEN ELSE, TMState, @I S_INT_FIRED, ic),
let n = @GET_1ST_FIREDINT, ic) in
@G F_THEN ELSE, TMState, @GTBit32Wrd, im n),
let z1 = @FETCH EXEC CYCLE, z), z2 = @EXTERNAL_ENV, z1) in
@TARGET_MACHI NE, 22),
let nie = INT_DISABLE, nic = @STBit32Wrd, ic, n, FF),
nsm= @NAT2832, OO), nst = @PUSH TMReg, rg, st),
nrg = @GetintHandier, ih, n, z) in
let nrgl = @TMREG ASSIGN, nrg, |EREG nie),
nrg2 = @TMREG ASSIGN, nrgl, ICREG nic),
nrg3 = @TMREG ASSIGN, nrg2, SG REG nsm) in
let z1 = @SET_TMST_TMREG z, nrg3), z2 = @SET_TMBT_TMBREG z1, nst),
23 = @FETCH EXEC CYCLE, z2), 24 = @EXTERNAL_ENV, z3) in
@ TARGET_MACHI NE, z4)),
let z1 = @FETCH EXEC CYCLE, z), z2 = @EXTERNAL_ENV, z1) in
@TARGET_MACHI NE, 22)),
let z1 = @FETCH EXEC CYCLE, z), z2 = @EXTERNAL_ENV, z1) in
@TARGET_MACH NE, 22));

i -".wdtnunlnmm

possible Dreams of Science

elated Works in 2000s

«» Rockwell Collins AAMP7 Separation Kernel
Microcode

«»» Rockwell Collins/Green Hills Integrity OS
Kernel

<+ Sun Microsystems VM

Possible!

«» Physics: accuracy of measurement

< Chemistry: purity of materias
“+Biology: rationa drug design

«» Computer Science: zero defect programs

- Tony Hoare, 2007

By combining the work of scientists
who pursue long-term ideals
with the work of engineers
who pursue immediate advantage
to develop a program verifier,
and realise the dream
of zero defect programming.
within the next fifteen years

- Tony Hoare, 2007

ormal Methods Humor

+ Mechanical Engineering is like looking for a black
cat in a lighted room.

+ Chemical Engineering is like looking for a black cat
in a dark room.

- Software Engineering is like looking for a black cat
in a dark room in which there is no cat.

N Systems Engineering is like looking for a black cat
in a dark room in which there is no cat and some-
one yells, ‘I got it

Questions?

Thank You!

