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Introduction

Is McCarthy’s Dream Practical?

Instead of debugging a program, one should prove 
that it meets its specifications, and this proof 
should be checked by a computer program.

John McCarthy,
“A Basis for a Mathematical Theory 

of Computation,”
1961

Fundamental Questions

vFundamental questions in physical science: 
What is the nature of matter? What is the basis 
and origin of organic life?

vFundamental questions in computer science: 
What is an algorithm? What can and what 
cannot be computed? When should an 
algorithm be considered practically feasible?

vFundamental questions in operating systems: 
What is an OS?   How is an OS implemented? 
What constitute a safe, reliable and efficient 
OS?

The Correctness Problems of 
Operating Systems

vWhy software are always incorrect?
vWhy most of commercial OSes are always 

incorrect?  
vHow to make a correct program? 
§Debugging?
§Testing?
§Or whatever?
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What is Wrong?! A Classification

v The Market Proven Operating Systems: Those operating systems 
have been in market for over 10-15 years and have been used in 
many safety-critical applications. They are therefore tested by the 
customers for a long time and many errors have been found and 
fixed. This kind of operating systems include pSOSystem, 
VxWorks and VRTX. However, this does not mean that these 
operating systems are safe and reliable. 

v The Certificated Operating Systems: Those operating systems have 
been validated by some internationally recognized organizations 
through a very systematic verification and validation approach. This 
kind of operating system includes OSE, Ada and Integrity 178B. 

v The Provably Correct Operating Systems: The operating system 
which has been proven to be correct against a formal specification.

Importance and Feasibility

v An embedded RTOS is so 
important that it is 
necessary to prove its 
correctness.

v An embedded RTOS 
kernel is so small that it is 
possible to prove its 
correctness.

How Do We Know It Works?

vWe can test it?
vWe can monitor its development process?
vWe can prove it!

High Assurance Systems

DO-178B (DO-254) Software/System Assurance Levels

v Level A: Catastrophic Failure Protection
v Level B: Hazardous/Severe Failure Protection
v Level C: Major Failure Protection
v Level D: Minor Failure Protection
v Level E: Minimal Failure Protection

Common Criteria Evaluation Assurance Levels
v EAL 7: Formally Verified Design and Tested
v EAL 6: Semi-formally Verified Design and Tested
v EAL 5: Semi-formally Designed and Tested
v EAL 4: Methodically Designed, Tested and Reviewed
v EAL 3: Methodically Tested and Checked
v EAL 2: Structurally Tested
v EAL 1: Functionally Tested

Common Criteria Evaluation Levels
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Proof Development 
System -

PowerEpsilon

Theorem Proving Process in 
PowerEpsilon

Does the system
have property X?

Model

Engineer

Translation

Specification
in PowerEpsilon

PowerEpsilon

Why not?

Guru

Translation

Properties
in PowerEpsilon

Properties

PowerEpsilon

v A strongly-typed polymorphic functional 
programming language based on Martin-Lof‘s Type 
Theory and Calculus of Constructions. 

v The concept of type universe hierarchies and a 
scheme for inductive defined types are introduced.

v The system can be used as both a programming 
language with a very rich set of data structures and a 
meta-language for formalizing constructive 
mathematics. 

v The system has been implemented using the 
software development system AUTOSTAR.

Natural Induction Rule

dec NatInduction :
∀(P : [Nat -> Prop])
[@(P, OO) ->

∀(m : Nat) [@(P, m) -> @(P, @(SS, m))] ->
∀(n : Nat) @(P, n)];

Theory - Leibniz‘s Equality

theory Equal is

def Equal =
λ(A : Type(0), 

x : A, 
y : A)

∀(P : [A -> Prop]) 
[@(P, x) -> @(P, y)]

end;

dec REFLEX :
∀(A : Type(0), 
R : [A -> A -> Prop], x : A)
@(R, x, x);

dec SYMM :
∀(A : Type(0), 
R : [A -> A -> Prop], 
x : A, y : A)
[@(R, x, y) -> @(R, y, x)];

dec TRANS :
∀(A : Type(0), 
R : [A -> A -> Prop], 
x : A, y : A, z : A)
[@(R, x, y) -> @(R, y, z) -> @(R, x, z)]

Proof 
Structure
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Specification Development

Specification1 Specification2

Specificationn

Refinement1 Refinement2

…

Refinementn-1

RefineEq1 RefineEq
2

RefineEqn-1

Proof Structure

CVMK Programs C Programs
CVMKSemEquiv

TM Codes X86 Codes

CCompEqCondCVMKCompEqCond

TMX86EqCond

CTMCompEqCond

Source Languages and Semantics

%-- CVMK Source Programs --%

dec CVMKProgram : Prop;

%-- C Source Programs --%

dec CProgram : Prop;

%-- CVMK Semantics --%

dec CVMKState : Prop;

dec CVMKProgSEM : [CVMKProgram -> CVMKState -> CVMKState];

%-- C Semantics --%

dec CState : Prop;

dec CProgSEM : [CProgram -> CState -> CState];

CVMK and C Semantic Equivalence
dec CVMKStEquiv : [CVMKState -> CState -> Prop];

dec CVMK2CTran : [CVMKProgram -> CProgram];

def CVMKSemEquiv =
λ(p1 : CVMKProgram, p2 : CProgram)
let c1 = @(CVMKProgSEM, p1),

c2 = @(CProgSEM,    p2) in
∀(z1 : CVMKState, z2 : CState)
[@(CVMKStEquiv, z1, z2) -> 
@(CVMKStEquiv, @(c1, z1), @(c2, z2))];

Target Machine

%-- TM Target Instructions --%
dec TMInstr : Prop;
def TMInstrList = @(List, TMInstr);

%-- TM Target Machines --%
dec TMState : Prop;

%-- X86 Target Instructions --%
dec X86Instr : Prop;
def X86InstrList = @(List, X86Instr);

%-- X86 Target Machines --%
dec X86State : Prop;

Semantics of Target Codes

%-- Semantics of TM Target Codes --%
dec TMSem : [TMInstrList -> TMState -> TMState];

%-- Semantics of X86 Target Codes --%
dec X86Sem : [X86InstrList -> X86State -> X86State];

%-- TM and X86 Target Equivalence --%
dec TMEquiv : [TMState -> X86State -> Prop];
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The Compilers

%-- CVMK to TM Compilers --%  

dec CVMKCompiler : [CVMKProgram -> TMInstrList];

%-- C to X86 Compilers --%  

dec CCompiler : [CProgram -> X86InstrList];

%-- C to TM Compilers --%  

dec C2TMCompiler : [CProgram -> TMInstrList];

%-- TM Loader --%

dec TMLoad : [TMInstrList -> TMState -> TMState];

%-- X86 Loader --%

dec X86Load : [X86InstrList -> X86State -> X86State];

Semantic Equivalence of CVMK and 
TM

dec CVMKTMStEquiv : [CVMKState -> TMState -> Prop];

def CVMKCompEqCond =
λ(p : CVMKProgram, q : TMInstrList)
let c1 = @(CVMKProgSEM, p),

c2 = @(TMLoad, q) in
∀(z1 : CVMKState, z2 : TMState)
[@(CVMKTMStEquiv, z1, z2) -> @(CVMKTMStEquiv, @(c1, z1), @(c2, z2))];

def CVMKCompEquiv = 
λ(p : CVMKProgram) @(CVMKCompEqCond, p, @(CVMKCompiler, p));

dec CVMKCompEqThm : 
∀(p : CVMKProgram) 

∃(q : TMInstrList) @(CVMKCompEqCond, p, q);

dec CVMKCompEqThm2 : 
∃(f : [CVMKProgram -> TMInstrList])

∀(p : CVMKProgram) @(CVMKCompEqCond, p, @(f, p));

Semantic Equivalence of C and TM

dec CTMStEquiv : [CState -> TMState -> Prop];

def CTMCompEqCond =
λ(p : CProgram, q : TMInstrList)
let c1 = @(CProgSEM, p),

c2 = @(TMLoad, q) in
∀(z1 : CState, z2 : TMState)
[@(CTMStEquiv, z1, z2) -> @(CTMStEquiv, @(c1, z1), @(c2, z2))];

def CTMCompEquiv = λ(p : CProgram) @(CTMCompEqCond, p, @(C2TMCompiler, p));

dec CTMCompEqThm : 
∀(p : CProgram) ∃(q : TMInstrList) @(CTMCompEqCond, p, q);

dec CTMCompEqThm2 : 
∃(f : [CProgram -> TMInstrList]) 

∀(p : CProgram) @(CTMCompEqCond, p, @(f, p));

Semantic Equivalence of C and X86

dec CX86StEquiv : [CState -> X86State -> Prop];

def CCompEqCond =
λ(p : CProgram, q : X86InstrList)
let c1 = @(CProgSEM, p), c2 = @(X86Load, q) in

∀(z1 : CState, z2 : X86State)
[@(CX86StEquiv, z1, z2) -> 
@(CX86StEquiv, @(c1, z1), @(c2, z2))];

def CCompEquiv =
λ(p : CProgram) @(CCompEqCond, p, @(CCompiler, p));

dec CCompEqThm :
∀(p : CProgram)

∃(q : X86InstrList) @(CCompEqCond, p, q);

Semantic Equivalence of TM and X86

dec TM2X86Tran : [TMInstrList -> X86InstrList];

dec TMX86StEquiv : [TMState -> X86State -> Prop];

def TMX86EqCond =
λ(q : TMInstrList, r : X86InstrList)
let c1 = @(TMSem, q),

c2 = @(X86Sem, r) in
∀(z1 : TMState, z2 : X86State)
[@(TMX86StEquiv, z1, z2) -> 
@(TMX86StEquiv, @(c1, z1), @(c2, z2))];

Semantic Equivalence of CVMK and 
X86 Through TM

def CVMKPrX86EqCond1 =
λ(p : CVMKProgram, 
q : TMInstrList, 
r : X86InstrList)

@(And, 
@(CVMKCompEqCond, p, q), 
@(TMX86EqCond, q, r));

dec CVMKPrX86EqThm1 :
∀(p : CVMKProgram) 

∃(q : TMInstrList, r : X86InstrList)
@(CVMKPrX86EqCond1, p, q, r);



6

Semantic Equivalence of CVMK 
and X86 Through C

def CVMKPrX86EqCond2 =
λ(p : CVMKProgram, 
q : CProgram, 
r : X86InstrList)
@(And, 

@(CVMKSemEquiv, p, q), @(CCompEqCond, q, r));

dec CVMKPrX86EqThm2 :
∀(p : CVMKProgram)

∃(q : CProgram, r : X86InstrList)
@(CVMKPrX86EqCond2, p, q, r);

Semantic Equivalence of CVMK and 
X86 Through C and TM

def CVMKPrX86EqCond3 =
λ(p : CVMKProgram, 
q : CProgram, 
t : TMInstrList, 
r : X86InstrList)
@(And, 
@(CVMKSemEquiv, p, q), 

@(And,
@(CTMCompEqCond, q, t),
@(TMX86EqCond, t, r)));

dec CVMKPrX86EqThm3 :
∀(p : CVMKProgram)

∃(q : CProgram, t : TMInstrList, r : X86InstrList)
@(CVMKPrX86EqCond3, p, q, t, r)

Functional 
Specifications

Gold Standard for Partitioning

v A partitioned system should provide fault 
containment equivalent to an idealized system in 
which each partition is allocated an independent 
processor and associated peripherals and all inter-
partition communications are carried on dedicated 
lines. 
§ Partition: 

• Spatial (processor, memory, resources) 
• Temporal (processor cycles)

§ The propagation of fault effects is prevented
§ Communication lines are independent

Partition-Based Architecture Temporal Partitioning
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Levels of Partitioning

Partitions could have their own ‘copies’ of OS services:

Separation Kernel Condition

For a given VMK state 
z, for any vmcb1 of 
type VMCB, if vmcb1
is well-defined in z, for 
any address l, if l is 
well-defined in z and 
vmcb1, for any vmcb2
of type VMCB, if 
vmcb2 is well-defined 
in z and l is well-
defined in z and vmcb2, 
then vmcb1 and vmcb2
are equal.

def SepKernelCond =
λ(z : VMKState)

∀(vmcb1 : VMCB)
[@(VMCB_In_VMKState, vmcb1, z) ->

∀(l : VMKAddress)
[@(Addr_In_VMCB, l, z, vmcb1) ->

∀(vmcb2 : VMCB)
[@(VMCB_In_VMKState, vmcb2, z) ->
@(Addr_In_VMCB, l, z, vmcb2) ->
@(Equal, VMCB, vmcb1, vmcb2)]]];

Separation Kernel Theorem

For any VMK state z and vmcb1 of type VMCB, if vmcb1
is well-defined in z, for any address l, if l is well-defined 
in z and vmcb1, for any vmcb2 of type VMCB, if vmcb2
is well-defined in z and l is well-defined in z and vmcb2, 
then vmcb1 and vmcb2 are equal.

dec SepKernelThm : 
∀(z : VMKState) @(SepKernelCond, z);

The Proof of Separation Kernel 
Theorem

def SepKernelLem =
λ(z : VMKState, vmcb1 : VMCB, p : @(VMCB_In_VMKState, vmcb1, z))
λ(l : VMKAddress), q : @(Addr_In_VMCB, l, z, vmcb1), vmcb2 : VMCB)
λ(q1 : @(VMCB_In_VMKState, vmcb2, z), q2 : @(Addr_In_VMCB, l, z, vmcb2))
let vmindex1 = @(GetVMCBMemoIndex, vmcb1), 

vmindex2 = @(GetVMCBMemoIndex, vmcb2) in
let addr_idx = @(GET_VMKADDR_IDX, l),

addr_loc = @(GET_VMKADDR_LOC, l) in
let vmcb_idx1 = @(GetVMCBMemoIndex, vmcb1),

vmcb_idx2 = @(GetVMCBMemoIndex, vmcb2) in
let P11 = @(Equal, VMKMemoIndex, addr_idx, vmcb_idx1),

P12 = let nz = @(SET_VMKST_IDX, z, addr_idx) in
let v = @(GET, nz, addr_loc) in

@(Not, @(Equal, KSval, v, ERR_KSVAL)),
P21 = @(Equal, VMKMemoIndex, addr_idx, vmcb_idx2),
P22 = let nz = @(SET_VMKST_IDX, z, addr_idx) in

let v = @(GET, nz, addr_loc) in
@(Not, @(Equal, KSval, v, ERR_KSVAL)) in

let p11 = @(PJ1, P11, P12, q), p21 = @(PJ1, P21, P22, q2) in
let w = @(Symm_Eq, VMKMemoIndex, addr_idx, vmcb_idx1, p11) in
@(Tran_Eq, VMKMemoIndex, vmcb_idx1, addr_idx, vmcb_idx2, w, p21);

The Proof of Separation Kernel 
Theorem (Cont)

def SepKernelThm =
λ(z : VMKState, vmcb1 : VMCB, p : @(VMCB_In_VMKState, vmcb1, z))
λ(l : VMKAddress, q : @(Addr_In_VMCB, l, z, vmcb1))
λ(vmcb2 : VMCB)
λ(q1 : @(VMCB_In_VMKState, vmcb2, z), 

q2 : @(Addr_In_VMCB, l, z, vmcb2))
let P = @(Equal, VMCB, vmcb1, vmcb2) in

let w = @(ExclMidRule, P) in
@(WHEN,
P,
@(Not, P),
P,
w,
λ(u : P) u,
λ(u : @(Not, P))
let v1 = @(UniqVMCBIdxThm1, z, vmcb1, vmcb2, p, q1, u),

v2 = 
@(SepKernelLem, z, vmcb1, p, l, q, vmcb2, q1, q2) in

@(v1, v2, P));

High-Level Design
and Abstract 

Machine 
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The Challenges

vSystem programs - especially those involving both 
interrupts and concurrency - are extremely hard to 
reason about. 

vMixture of high-level and low-level programming 
techniques in OS development.

vMost difficult part: modeling of interrupt handling
vExisting program verification techniques can probably 

handle those high-level concurrent programs, but they 
have consistently ignored the issues of interrupts thus 
cannot be used to certify concurrent code in the OS 
kernel code. Having both explicit interrupts and threads 
creates the new challenges.

Two Layers of Abstraction

vAt the “higher” abstraction level, we have threads that 
follow the standard concurrent programming model: 
interrupts are invisible, but the execution of a thread 
can be preempted by other threads; synchronization 
operations are treated as primitives.

vBelow this layer, we have more subtle “lower-level” 
code involving both interrupts and concurrency. The 
implementation of many synchronization primitives 
and input/output operations requires explicit 
manipulation of interrupts.

Instructions of VMK-TM

vTM-1
§ Instructions for Computing and Control

vTM-2
§ Instructions for VMK Manager, VMCBs and 

TTSCBs
§ Instructions for Virtual Interruption Management
§ Instructions for Scheduling
§ Instructions for Location List  

Semantics of Context Saving
dec SAVE_CONTEXT : [TMState -> TMState];

def SAVE_CONTEXT = 
λ(z : TMState)
let im = @(GET_TMST_IMEM,   z),

dm = @(GET_TMST_DMEM,   z),
rg = @(GET_TMST_TMREG,  z),
st = @(GET_TMST_TMSREG, z),
io = @(GET_TMST_TMVECT, z),
mn = @(GET_TMST_VMKMAN, z) in

let old_vm_loc = @(GET_VMKMAN_RUNVM, mn) in
let old_vm = @(VMCB_GET, z, old_vm_loc) in
let vm_stack  = @(GetVMCBIntContxt, old_vm),

nvm_stack = @(PUSH, TMReg, rg, vm_stack) in
let new_vm = @(SetVMCBIntContxt, old_vm, nvm_stack) in

@(VMCB_SET, z, old_vm_loc, new_vm);

def SV_CONT_SEM =
λ(z : TMState, r : Nat, s : Nat, t : Nat)
@(SAVE_CONTEXT, z);

Semantics of Context Switching
dec SWITCH_CONTEXT : [TMState -> TMState];

def SWITCH_CONTEXT =
λ(z : TMState)
let im = @(GET_TMST_IMEM,   z), dm = @(GET_TMST_DMEM,   z),

rg = @(GET_TMST_TMREG,  z), sg = @(GET_TMST_TMSREG, z),
io = @(GET_TMST_TMVECT, z), mn = @(GET_TMST_VMKMAN, z) in

let run_vm_loc = @(GET_VMKMAN_RUNVM, mn) in
let run_vm = @(VMCB_GET, z, run_vm_loc) in
let memoidx = @(GetVMCBMemoIndex, run_vm),

cnstack = @(GetVMCBIntContxt, run_vm) in
let context  = @(TOP, TMReg, ERR_TMREG, cnstack),

ncnstack = @(POP, TMReg, cnstack) in
let nrg = 
@(TMREG_ASSIGN, context, SG_REG, @(NAT2B32, memoidx)) in
let nrun_vm = @(SetVMCBIntContxt, run_vm, ncnstack) in

let nz = @(SET_TMST_TMREG, z, nrg) in
@(VMCB_SET, z, run_vm_loc, nrun_vm);

def SW_CONT_SEM =
λ(z : TMState, r : Nat, s : Nat, t : Nat)
@(SWITCH_CONTEXT, z);

Simulation Semantics of TM

def TARGET_MACHINE =
λ(z : TMState)
let im = @(GET_TMST_IMEM,   z), dm = @(GET_TMST_DMEM,   z),

rg = @(GET_TMST_TMREG,  z), st = @(GET_TMST_TMSREG, z), 
io = @(GET_TMST_TMVECT, z) in

let ie = @(TMREG_RETRIEVE, rg, IE_REG), ic = @(TMREG_RETRIEVE, rg, IC_REG),
im = @(TMREG_RETRIEVE, rg, IM_REG), ih = @(TMREG_RETRIEVE, rg, IH_REG), 
sm = @(TMREG_RETRIEVE, rg, SG_REG) in

@(GIF_THEN_ELSE, TMState, @(IS_INT_ENABLED, ie),
@(GIF_THEN_ELSE, TMState, @(IS_INT_FIRED, ic),

let n = @(GET_1ST_FIRED_INT, ic) in
@(GIF_THEN_ELSE, TMState, @(GTBit32Word, im, n),

let z1 = @(FETCH_EXEC_CYCLE, z), z2 = @(EXTERNAL_ENV, z1) in
@(TARGET_MACHINE, z2),

let nie = INT_DISABLE,    nic = @(STBit32Word, ic, n, FF),
nsm = @(NAT2B32, OO), nst = @(PUSH, TMReg, rg, st), 
nrg = @(GetIntHandler, ih, n, z) in

let nrg1 = @(TMREG_ASSIGN, nrg,  IE_REG, nie),
nrg2 = @(TMREG_ASSIGN, nrg1, IC_REG, nic),
nrg3 = @(TMREG_ASSIGN, nrg2, SG_REG, nsm) in

let z1 = @(SET_TMST_TMREG,  z,  nrg3), z2 = @(SET_TMST_TMSREG, z1, nst),
z3 = @(FETCH_EXEC_CYCLE, z2),      z4 = @(EXTERNAL_ENV, z3) in

@(TARGET_MACHINE, z4)),
let z1 = @(FETCH_EXEC_CYCLE, z), z2 = @(EXTERNAL_ENV, z1) in

@(TARGET_MACHINE, z2)),
let z1 = @(FETCH_EXEC_CYCLE, z), z2 = @(EXTERNAL_ENV, z1) in

@(TARGET_MACHINE, z2));
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Conclusions

Related Works in 2000s

v Rockwell Collins AAMP7 Separation Kernel 
Microcode

v Rockwell Collins/Green Hills Integrity OS 
Kernel

v Sun Microsystems JVM

Impossible Dreams of ScienceImpossible Dreams of Science

vPhysics: accuracy of measurement
vChemistry: purity of materials
vBiology: rational drug design
vComputer Science: zero defect programs

- Tony Hoare, 2007

The Dream is Possible!The Dream is Possible!

By combining the work of scientists
who pursue long-term ideals
with the work of engineers
who pursue immediate advantage
to develop a program verifier,
and realise the dream
of zero defect programming.

within the next fifteen years

- Tony Hoare, 2007

Formal Methods Humor

Questions?

Thank You!


