## Bluetooth Low Energy and its Convergence with Lightweight IPv6

22 Apr, 2012 A talk at 'Wireless Connectivity Technologies for Embedded Systems' organized by Embedded Systems Association @ Beihang University

Canfeng Chen, PhD Nokia Research Center, Radio Systems Lab





- Bluetooth Low Energy & Bluetooth roadmap
- Bluetooth Low Energy stack & chips & products
- Lightweight IPv6 for Bluetooth Low Energy



- Bluetooth Low Energy & Bluetooth roadmap
- Bluetooth Low Energy stack & chips & products
- Lightweight IPv6 for Bluetooth Low Energy

# **Bluetooth Core Specifications**

| Version              | Feature               | Released | RF     | Data Rate |
|----------------------|-----------------------|----------|--------|-----------|
| Bluetooth v1.1       | IEEE 802.15.1         | 2001     | 2.4GHz | 1Mbps     |
| Bluetooth v1.2       | Personal Area Network | 2003     | 2.4GHz | 1Mbps     |
| Bluetooth v2.0 + EDR | Enhanced Data Rate    | 2004     | 2.4GHz | 3Mbps     |
| Bluetooth v2.1 + EDR | Simple Secure Pairing | 2007     | 2.4GHz | 3Mbps     |
| Bluetooth v3.0 + HS  | High Speed            | 2009     | ~5GHz  | 24Mbps    |
| Bluetooth v4.0       | Ultra-Low Power       | 2010     | 2.4GHz | 1Mbps     |



# **Bluetooth Low Energy History**

- Nokia NRC made a proposal in 2001
  - BT\_LEE (Bluetooth Lower Energy End)
- Wibree Forum was formed in 2006
- BT-SIG renamed it to Ultra Low Power (ULP) in 2007
  - In 2008 BT-SIG announced Bluetooth Low Energy as the marketing name for ULP
- BT-SIG released Bluetooth Spec v4, incl. BLE in July 2010
  - October 2011, BT-SIG renamed BLE as Bluetooth Smart (single mode), and Bluetooth Smart Ready (dual mode)





# Bluetooth Low Energy – introduced with Bluetooth v4.0

- Bluetooth low energy technology is a <u>global standard</u>, very low power wireless technology
- Bluetooth low energy technology enables devices with <u>coin</u> <u>cell batteries</u> to be wirelessly connected to standard Bluetooth enabled devices





# **BR/EDR** and LE comparison

| Technical Specification | BR / EDR                  | LE                       |
|-------------------------|---------------------------|--------------------------|
| Carrier Frequency       | 2.4 GHz                   | 2.4 GHz                  |
| Over the air data rate  | 1 ~ 3 Mbps                | 1 Mbps                   |
| Application throughput  | 0.7 ~ 2.1 Mbps            | 0.2~0.4 Mbps             |
| Modulation              | GFSK, DPSK (EDR)          | GFSK only, BT=0.5, H=0.5 |
| Robustness in Channel   | AFH, FEC, ARQ             | AFH (ARQ for connection) |
| Voice                   | SCO, eSCO                 | N/A                      |
| Link Topology           | Piconet (with Scatternet) | Star (no mesh)           |



# Principles of ultra low power operation

- Low duty cycle, short packages and high on air data rate
  - Connection intervals from 3ms to 4s+
  - Short data packets up to 31 bytes payload
  - 1 Mbps on-air data rate
  - System spends most time in sleep mode
  - RF is on only a small fraction of the time
- Fast connection time
  - Devices can connect in 3ms
  - Allows for fast connection, send data and then disconnect
  - System can spend most of the time in deep sleep
- Low peak power
  - Use relaxed RF parameters for GFSK modulation



# 1. Lower standby time

- Bluetooth low energy technology uses only 3 advertising channels
  - Bluetooth technology uses 16 to 32 channels
  - RF is on for 0.6 to 1.2 ms instead of 22.5 ms
- Idle current is dominated by deep sleep current
  - Sensor type of applications send data less often (0.5s to 4s intervals)
  - RF current is negligible due to low duty cycles
  - Protocols optimized for this communication model



# 2. Faster connection

- In Bluetooth low energy technology a device that is advertising is able to connect to a scanning device
- The devices can connect in 3 ms
  - In Bluetooth technology a link level connection can take up to 100 ms
  - In Bluetooth technology an L2CAP connection can take significantly longer

# 3. Lower peak power

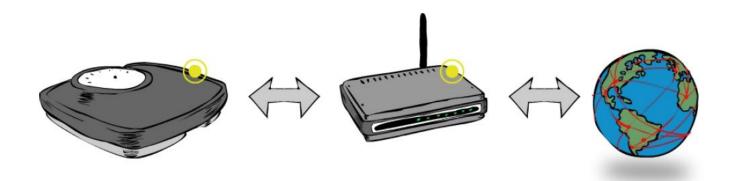
- Bluetooth low energy technology uses relaxed RF parameters
  GFSK modulation index increased

  - Allowing better range / robustness
    - BLE uses relaxed RF parameters
      - GESK modulation
      - 2MHz bandwidth
      - BT = 0.5
    - BT uses strict RF parameters
      - GFSK modulation (EDR uses  $\pi/4$  QPSK,  $\pi/8$  PSK)
      - 1MHz bandwidth
      - BT = 0.35
- Packet length restricted
  - Together to GFSK gives lowest complexity transmitter / receiver
  - Gives you lower peak power
- THIS GIVES YOU COIN CELL OPERATION

### Bluetooth Low Energy is born for Sensor applications

- Sum up: How to achieve ultimate low power?
  - Lower standby time (i.e. lower duty cycle)
  - Faster connection (i.e. able to send data quicker)
  - Lower peak power (i.e. able to be used with coin cell battery)
- Sensors are the ideal application transmitting small amounts of discrete data



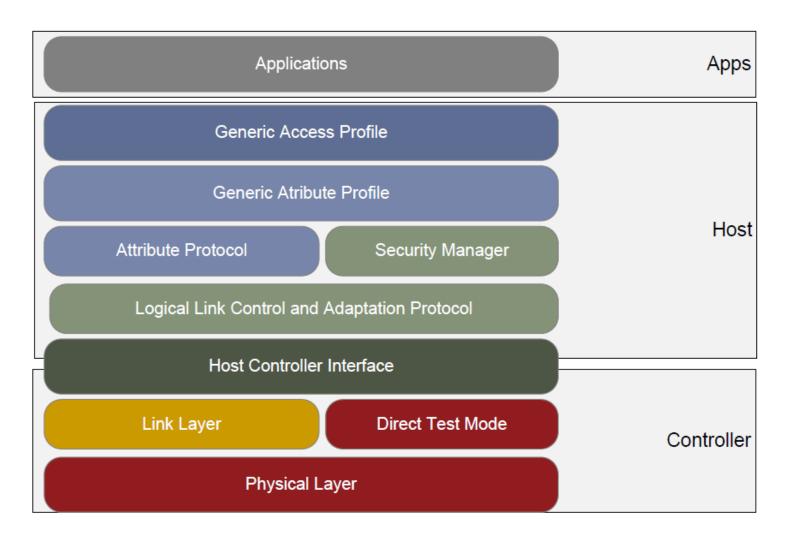

### Low Energy designed for Embedded Sensor Applications

- Low energy consumption means that the battery will work for years the lifetime of the device
- With no need for replacement, the battery can be encapsulated in the product, permitting previously impossible applications



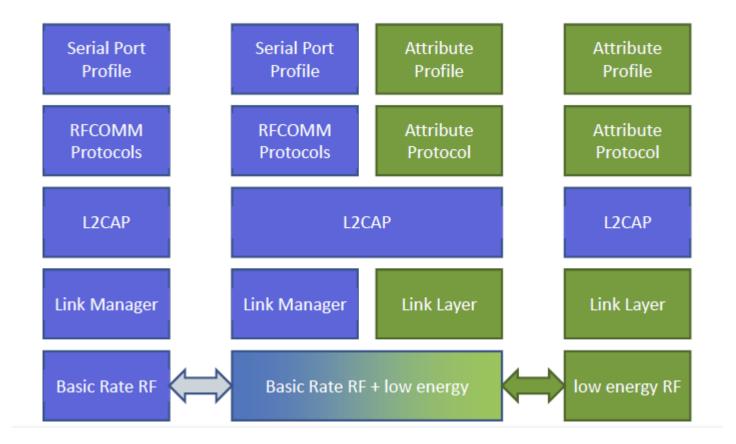
# Low Energy designed for Internet of Things thru Gateway

- Enables low-power sensor accessories to wirelessly connect to gateway devices, and thereby to the Internet
- Remote UI and app downloadable from Web, reduce the complexity of sensor devices









- Bluetooth Low Energy & Bluetooth roadmap
- Bluetooth Low Energy stack & chips & products
- Lightweight IPv6 for Bluetooth Low Energy

### **BLE stack**



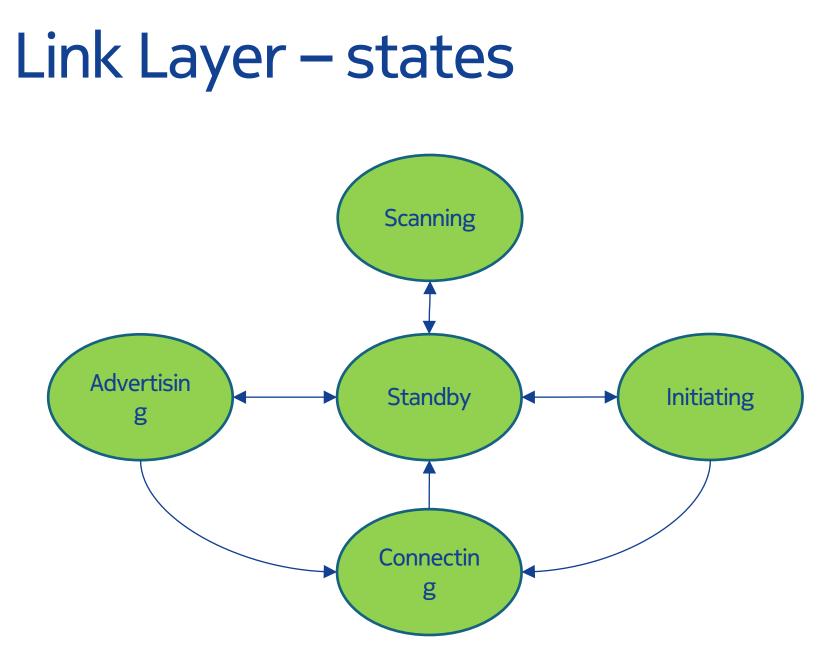


# Dual-mode and single-mode





### Physical layer – two types of channels


#### • 2.4 GHz ISM Band Transceiver

- Divided into 40 RF Channels
- 2 MHz Channel Spacing
- Advertising Channels
  - Used to broadcast data
  - Connectable
  - Discoverable
  - 3 FIXED Channels
- Data Channels
  - Used to send application data
  - Adaptively Frequency Hopped
  - 37 Dynamic Channels

#### Physical layer – advertising avoid WiFi

| MHz         | 2420<br>2422<br>2422<br>2420<br>2418<br>2416<br>2416<br>2410<br>2410<br>2406<br>2404<br>2402 | 2476<br>2476<br>2476<br>2476<br>2466<br>2466<br>2466<br>2466 | 2480 |
|-------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|
| Advertising | 30                                                                                           |                                                              | 39   |
| Data        | 0 1 2 3 4 5 6 7 8 9 10                                                                       | 11111111111111111111111111111111111111                       | 2    |
| Wi-Fi       |                                                                                              | 66666666666666666666666666666666666666                       |      |







# Link layer – packet format

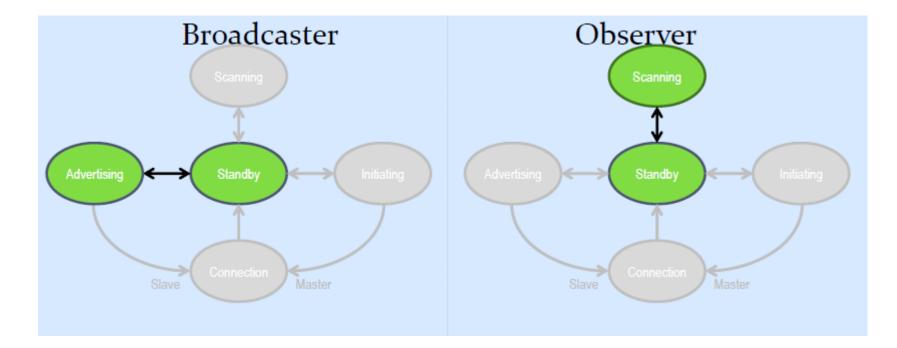
- All packets have same structure
  - Preamble 01010101 or 10101010
  - Access Address correlated 32 bit sequence
  - Payload actual data
  - CRC 24 bit CRC for robust bit error detection
    - CRC calculated over Payload

| Preamble | Access Address | Payload        | CRC      |
|----------|----------------|----------------|----------|
| 1 octet  | 4 octets       | 2 to 39 octets | 3 octets |

# **BLE new functionalities**

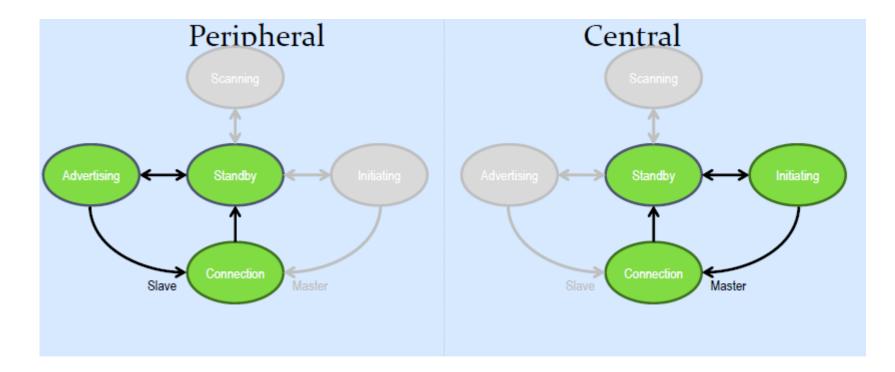
- There are three major components of LE baseline core functionality
- GAP –General Access Protocol (Establishing Connections, Advertising Services)
- **GATT** –Generic Attribute Transport (data exchange between high-level services)
- SM –Security Manager (Pairing/Bonding/Authentication and Link Security/Encryption)

### GAP


- Extension of existing BR/EDR GAP
- Defines profile **roles** that the devices can take
  - Broadcaster, Observer
  - Peripheral, Central
- Defines the standard ways for devices to connect
  - Discoverable, Connectable, Bonding

# Four different profile roles

• Broadcaster, Observer, Peripheral, Central


RX mandatory TX mandatory TX optional **RX** optional Temp Display Temp sensor (Observer) (Broadcaster) Both TX, RX Both TX, RX mandatory mandatory Watch Mobile Phone (Peripheral) (Central)

### Link layer state machine for Broadcaster and Observer





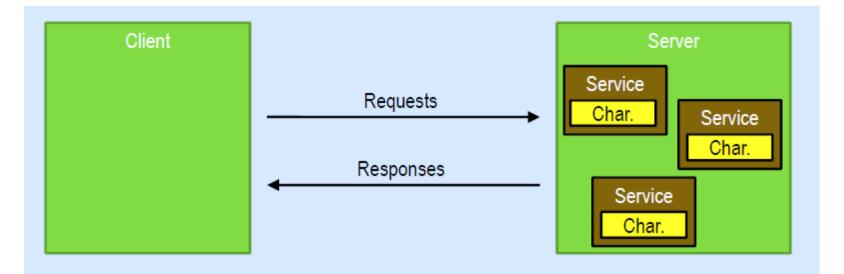
### Link layer state machine for Peripheral and Central





# ATT

#### • ATT (Attribute Protocol)


- Client Server Architecture
  - servers have data, clients request data to/from servers
  - Servers expose Data using Attributes
- Protocol Methods
  - request, response, command,
  - notification, indication, confirmation



# GATT

#### • GATT (Generic Attribute Profile)

- Same client server architecture as Attribute Protocol
  - except that data is encapsulated in "Services", and data is exposed in "Characteristic"





# BT 4.0 products (Bluetooth Smart Ready)

- Apple releases world's first computers and phone with Bluetooth v4.0
- Nokia N9
- Motorola Droid RAZR
- Samsung Galaxy Nexus









From left to right: iPhone4S, Mac Mini, MacBook Air, New iPad



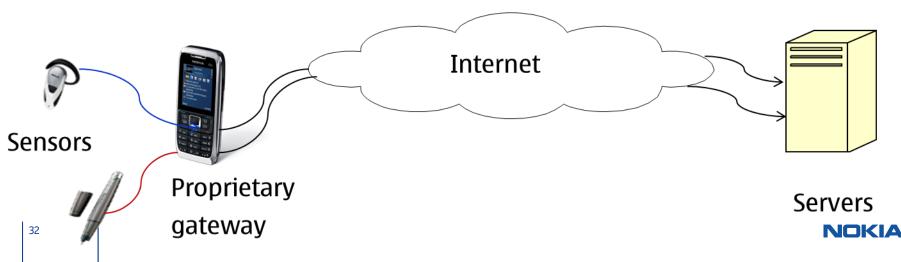
#### BT 4.0 products (Bluetooth Smart)



#### http://www.bluetooth.com/Pages/Bluetooth-Smart-Devices.aspx



From left to right: Wahoo HR, Polar HR, Dayton and Nordic HR, MOTOACTV, G-Shock

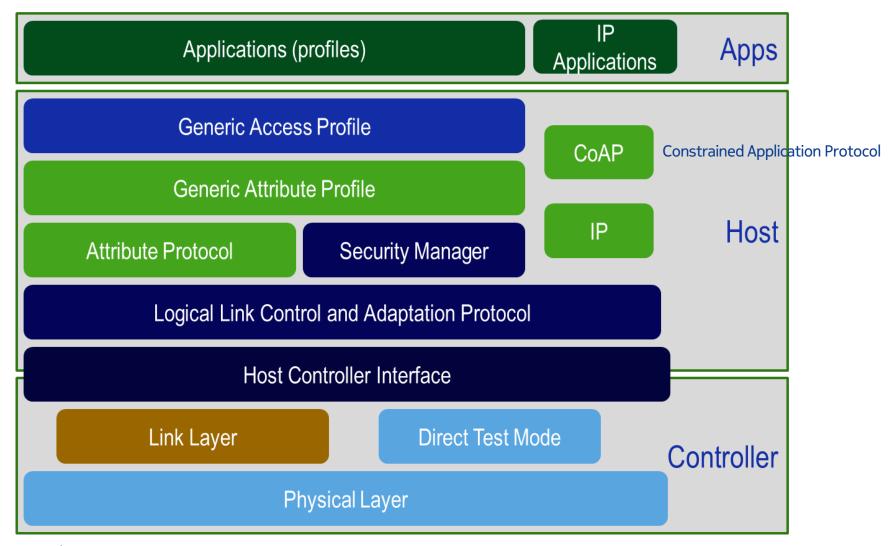





- Bluetooth Low Energy & Bluetooth roadmap
- Bluetooth Low Energy stack & chips & products
- Lightweight IPv6 for Bluetooth Low Energy

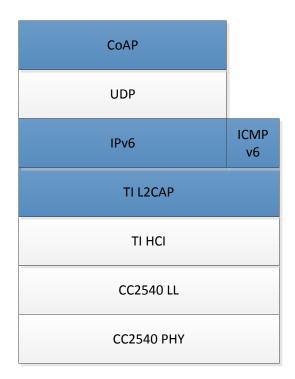
# Why IP over BT LE?

- The sensor vendors have to write a <u>specialized gateway</u> <u>application</u> to every phone OS they want to support, and the user will have to install it
- Non-generic gateway solution is <u>not a scalable approach</u>
- Solutions for IPv6 over Wireless PAN (6lowpan) exist, but they <u>do not support BT-LE</u> that is expected to appear in billions of devices and sensors in the next few years




# Benefits of e2e IP connectivity

- New (web) application protocols can be introduced without changing the network infrastructure
- Tools for diagnostics, management, and commissioning of IP networks already exist
- In IP-based networks edge routers need no intermediate entities like translation gateways or proxies; instead, they only forward datagrams at the network layer thus do not maintain any application-layer state
- Stateless routers can deliver messages using any number of paths, creating greater redundancy




#### Stack for IP capable BLE tag/sensor





#### Networking Stack – sensor side



#### • L2CAP

Implemented L2CAP SAR

#### • IPv6

- Light weight
- 6LoWPAN optimized
- Based on µIP (part of Contiki)
- ICMPv6
  - Exchange Context Information

#### • CoAP

• Based on CoAP in Contiki

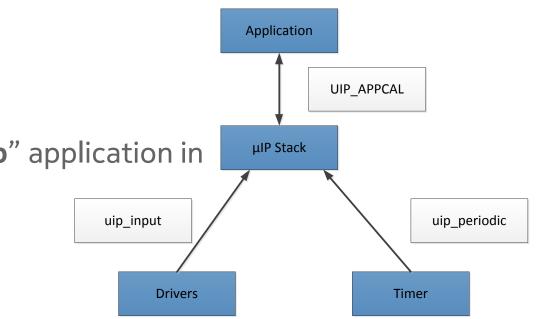
#### Networking Stack – Phone Side

#### • L2CAP

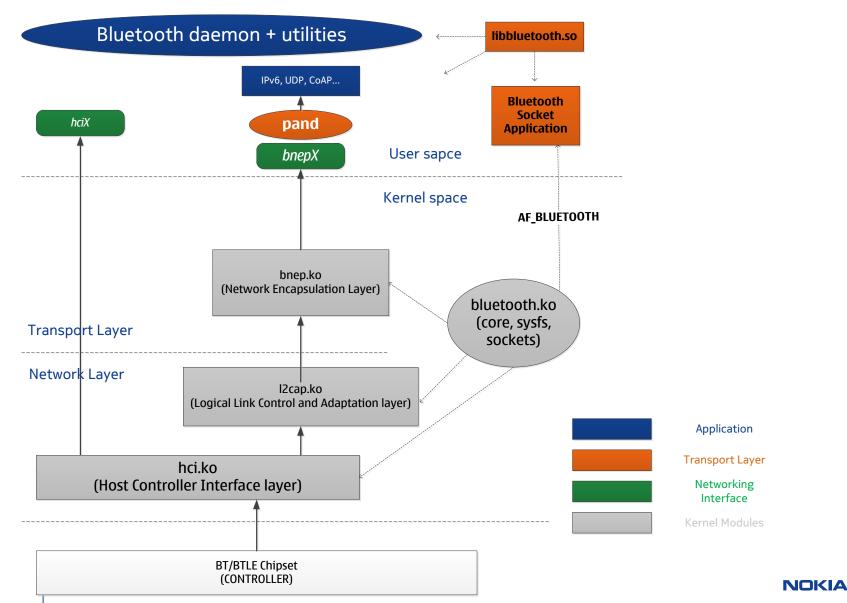
- -New CID (0x0007)
- -L2CAP SAR

#### 6LoWPAN adapter

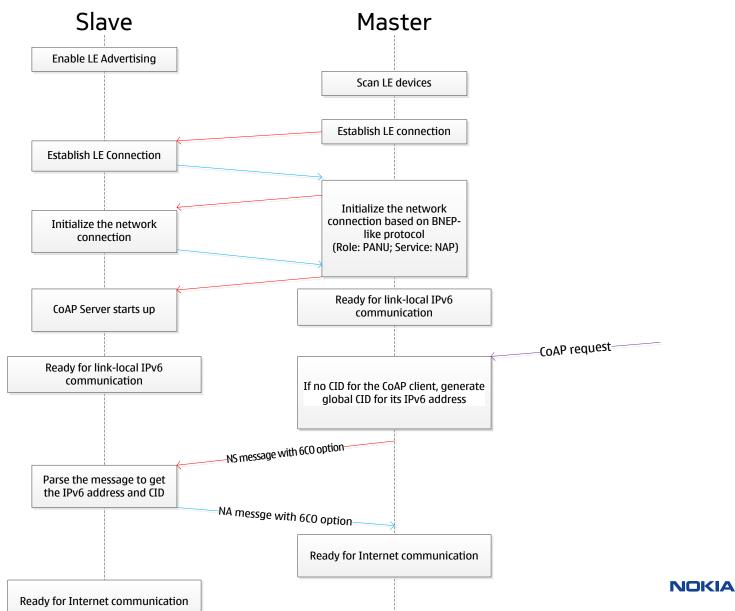
- -Context Information management
- -Head Compression/Decompression


#### • ICMPv6

- Exchange Context Information between Master and Slave
- -Support 6CO (6LoWPAN Context Option) in RS/RA message


| ICMPv6     | IPv6 |                          |
|------------|------|--------------------------|
| 6LoWPAN    |      |                          |
| L2CAP      |      |                          |
| HCI        |      | Celluar/WiFi Lower-Level |
| WL1273 LL  |      |                          |
| WL1273 PHY |      |                          |

#### Implementation on CC2540


- Based on µIPv6
- Implement the µIP interfaces to the higher/lower layer
- CoAP
  - Based on "rest-coap" application in Contiki



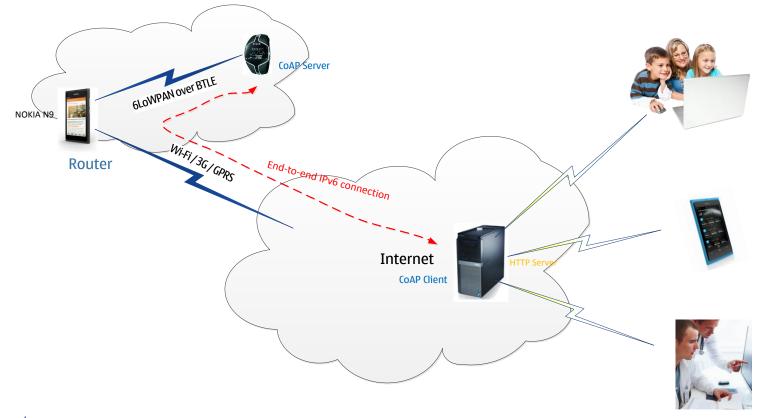
#### Implementation on N9



#### IPv6 connectivity setup



# Standardization status


- IETF
  - Defines transmission of IPv6 packets over BTLE
  - <u>http://datatracker.ietf.org/doc/draft-ietf-6lowpan-btle/</u>
  - Draft ver. 06 updated on Mar.6, 2012
- BT SIG
  - On-going in Smart Home BET (Bluetooth Ecosystem Team)
  - Sensor Internet Protocol
    - MRD (Markets Requirements Document), expected Jul.2012
    - FRD (Function Requirements Document), expected Aug.2012
  - Working group will be established after approval
  - Interoperability implementation tests needed!



# Demo video

• World 1<sup>st</sup> end-to-end IPv6 capable IoT/WoT app

heart rate belt and weight scale





#### Questions? Canfeng-David.Chen@nokia.com

