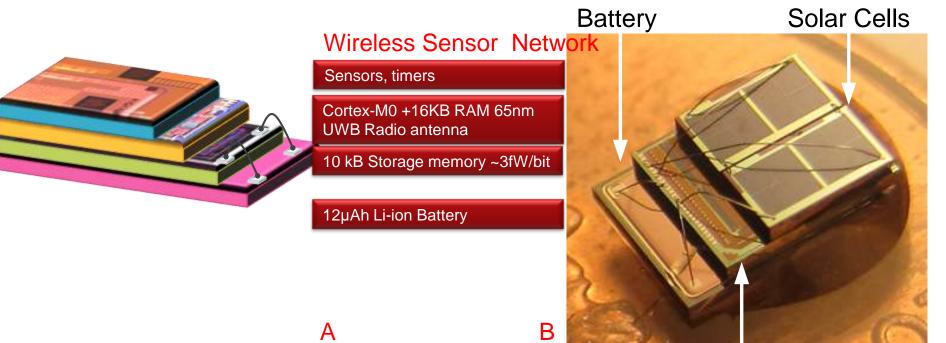
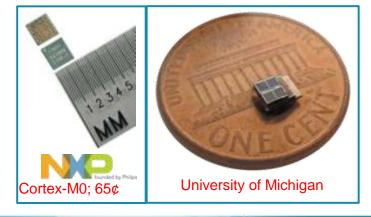


Worldwide Education Program

he Architecture for the


the Digital WO


Chang Ahead

时听 Tim Shi, tim.shi@arm.com University Program Manager Head, ARM China 23rd November 2013 Specified Only for Embedded Salon

World's Smallest ARM Computer?

Processor, SRAM and PMU

Wirelessly networked into large scale sensor arrays

World's Largest ARM Computer?

4200 ARM powered Neutrino Detectors

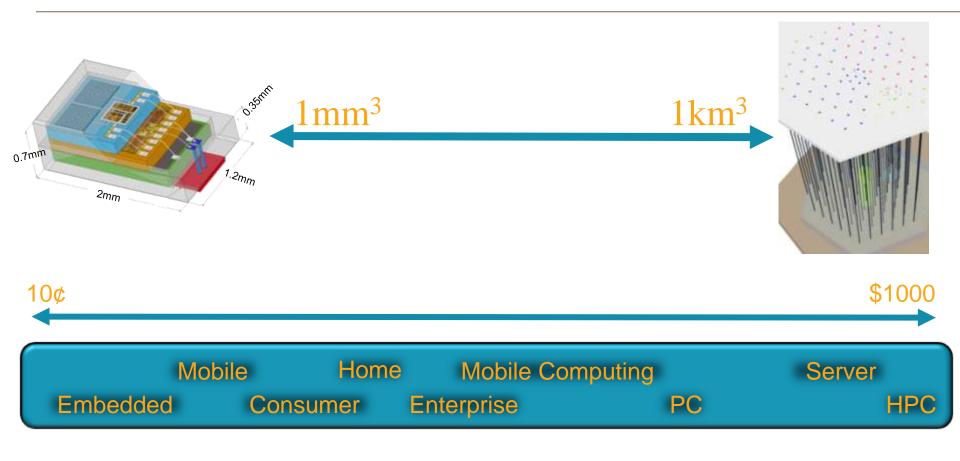
70 bore holes 2.5km deep

60 detectors per string starting 1.5km down

1km³ of active telescope

2.5km

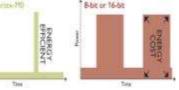
Work supported by the National Science Foundation and University of Wisconsin-Madison


Complex Low Power IOT Device

The Architecture for the Digital World®

ARM

ARM: from 1mm³ to 1km³?


The Architecture for the Digital World

Cortex-M processor solution

Energy efficiency

Lower energy costs

Low power implementati Sleep mode support Wake-up Interrupt Control Increased intelligence at node

Ease of use

Lower software costs

Broad tools and OS support Binary compatible roadmap CMSIS support Pure C target

High performance

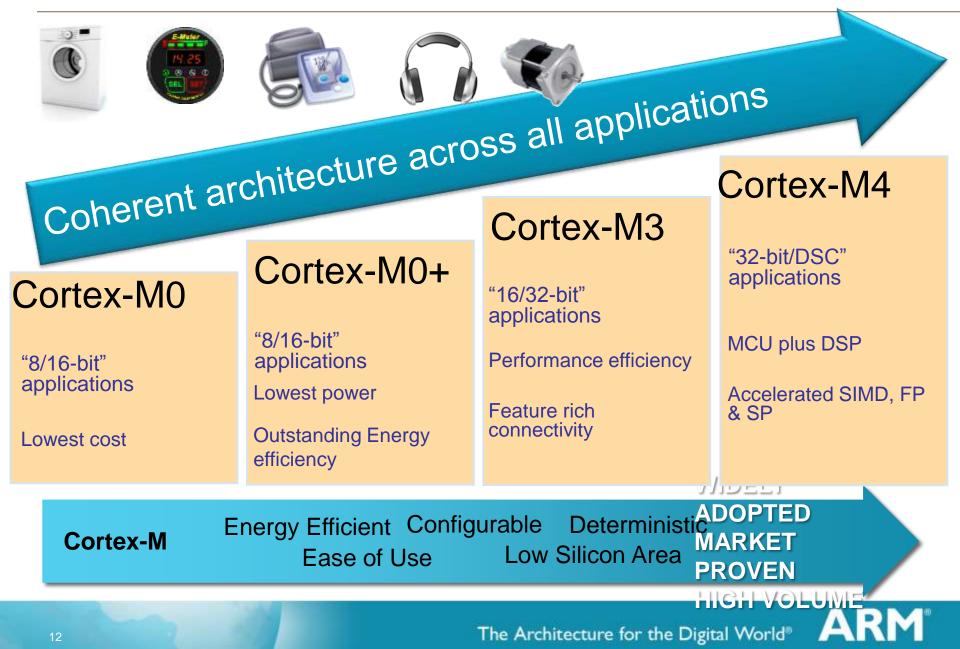
Competitive products

32-bit RISC architecture High efficiency processor cores Integrated Interrupt Controller (NVI

Reduced system cost

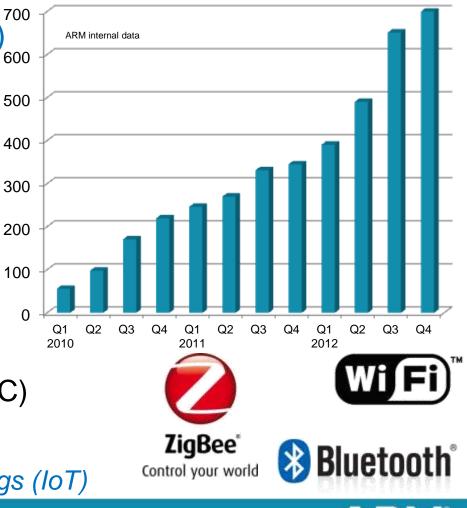
Lower silicon costs

Thumb[®]-2 code density Area optimised designs CoreSight support


The widest MCU platform portfolio

Chose from 2,194 products – and the list keeps growing

Listed parts on partners web as of end of November 2012


The Cortex-M Microcontroller Processors

ARM Cortex-M Reaching Beyond MCU

- Total Cortex-M volume
 - 2010 = 376M
 - 2012 = 2.2Bn (~6x growth)
- Cumulatively >3.5B Cortex-M processors shipped
- >160 Licensees
- Wireless, SoCs, Automotive
- Emerging markets
 - Sensors
 - MEMS
 - Power Management IC (PMIC)
 - Touch controllers
 - Connectivity Internet of Things (IoT)

Total Cortex-M Shipments (Million Units)

Powerful & scalable instruction set

VABS VLDR VNMLA	VADD VMLA VMMLS	VCMP VMLS VNHUL	Float	ing Po	int vsort		VLDM VNEG VSTR
VSUB	VFMA	VEMS	VENMA	VENMS		Cort	ex-M4 FPU
РКН	QADD				20	QDSUB	QSAX
OSUB	OSUB16			fact N		SEL	SHADDIA
SHADDS	SHASX	DSF	P (SIMD ,	Iastin	AC	SHLABT	SHLATE
SMLATT	SMLAD					SMLALD	SHLAWB
1	C		SMMLA	SMMLS	SMMUL	and the second second	and the state of the second
SMLAWT	SMLSD	SMLSLD	addina.	armua	Sumor 9	SMUAD	SMULAB
ADC	ADD	ADR	AND	ASR		SMULBT	SMULTT
CLZ	BAC		BIC	CDP	CLREX	SMULTB	SMULWT
CBNZ CBZ	CMN	CHP	DBG	EOR	LDC	SMULWB	SMUSD
LDMIA	A 4		doto n		LDRD	SSAT16	SSAX
LDREX		vanceo	l data p	ocess	Inges	SSUB16	SSUBI
LSR	Bit	field m	nanipula	tions	MOVT	SXTAB	SXTAB16
MRC			lampule		ORN	SXTAH	SXTB16
ORR	PLD	PLDW	PLI	FOP	PUSH	UADDI6	UADD8
ABIT	REV	REVIA	REVSH	ROR	RRX	UASX	UHADDIA
Contraction of the local division of the	Contractor Contractor		- #58	SBC	SBFX	UHADDI	UHASX
(BKPT) (BLX)	ADC ADD	ADR	SDIV	SEV	SHLAL	UHSAX	UHSUBIA
BX CPS	AND ASR		SMULL	SSAT	STC	UHSUBI	UMAAL
DMB	BL	BIC	STHIA	STMDB	STR	and the second second second	Commences and the second second
OS8	CCMN CCMP	EOR	STRB	STRBT	STRD	UQADDI6	UQADD
eneral data	nrocos	eina	STREX	STREXE	STREXH	UQASX	UQSAX
eneral uata	piocos	MOV	SUB	SXTB	STRT	UQSUBIA	UQSUBA
O control ta	sks 🚺	ORR	TBB	TEH	TEQ	USADI	USADAR
	H	ROR	TST	UNFX	UDIV	USATIS	USAX
SEV. SXTB	(ASB) (SBC)	STH	UMLAL	UMULL	USAT	USUB16	USUBB
SXTH UXTE	(STR) (STRB)	STRH	UXTB	UXTH	WFE	UXTAB	UXTABIA
WXTH WEE	SUB SVC	TST	C WEI	YIELD		UXTAH	UXTB16
WHI YIELD	Cortex-M0	/M0+/M1			Cortex-M3		Cortex-M4

Cortex-M feature set comparison

	ARM7TDMI	Cortex-M0	Cortex-M0+	Cortex-M3	Cortex-M4
Instruction set architecture	ARM, Thumb	Thumb, Thumb-2 System Instructions	Thumb, Thumb-2 System Instructions	Thumb + Thumb-2	Thumb + Thumb- 2, DSP, SIMD, FP
DMIPS/MHz	0.72 (Thumb), 0.95 (ARM)	0.84	0.93	1.25	1.25
CoreMark/MHz		1.99	2.15	3.32	3.40
Bus interfaces	1	1	1 (+1 opt.)	3	3
Integrated NVIC	No	Yes	Yes	Yes	Yes
Number interrupts	2 (IRQ and FIQ)	1-32 + NMI	1-32 + NMI	1-240 + NMI	1-240 + NMI
Interrupt priorities	None	4	4	8-256	8-256
Breakpoints, Watchpoints	2 Watchpoint Units	4-0, 2-0	4-0, 2-0	8/2/0, 4/1/0	8/2/0, 4/1/0
Memory Protection Unit (MPU)	No	No	Yes (Option)	Yes (Option)	Yes (Option)
Integrated trace option (ETM or MTB)	ETM (Option)	No	MTB (Option)	ETM (Option)	ETM (Option)
Single Cycle Multiply	No	Yes (Option)	Yes (Option)	Yes	Yes
Hardware Divide	No	No	No	Yes	Yes
WIC Support	No	Yes	Yes	Yes	Yes
Bit banding support	No	System option	System option	Yes (Option)	Yes (Option)
Single cycle DSP/SIMD	No	No	No	No	Yes
Floating point hardware	No	No	No	No	Yes
Bus protocol	Use AHB bus wrapper	AHB Lite	AHB Lite	AHB Lite, APB	AHB Lite, APB
CMSIS Support	No	Yes	Yes	Yes	Yes

The Architecture for the Digital World®

ARM

Cortex Microcontroller Standard (CMSIS)

Abstraction layer for all Cortex-M processor based devices

- CMSIS-CORE: API for Cortex-M processor and core peripherals
- CMSIS-DSP : DSP Library with 61 function types for Cortex-M
- CMSIS-SVD : XML system view description for peripherals
- CMSIS-RTOS : API for RTOS integration
- Benefits to the embedded developer

- Consistent software interfaces for silicon and middleware vendors
- Simplifies re-use across Cortex-M processor-based devices
- Reduces learning curve, development costs, and time-to-market

ARM Tools for the Entire Design Flow

- A summary of all ARM development tool products
- All are compatible with the Cortex-M family of processors

	ASICS and ASSPs	MCUs and Smartcards		
Software Tools	DS-5	MDK-ARM		
Models	Fast Models	μVision Simulator		
Debug Adapters	DSTREAM & VSTREAM	ULINK2, ULINKpro		
Development Boards	Versatile & Versatile Express	Eval boards and MPS		

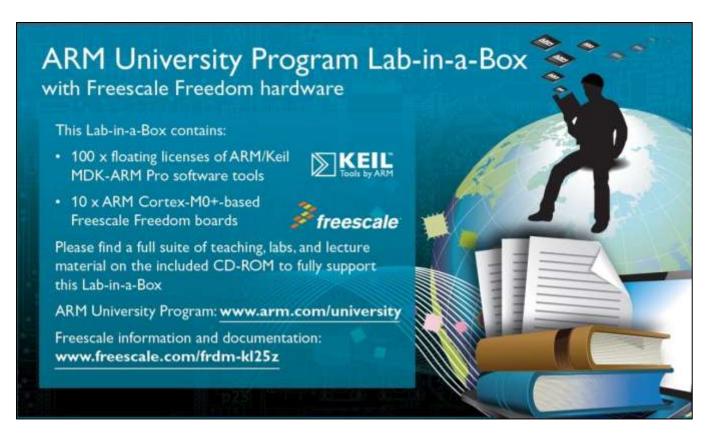
Cortex-M Tools Ecosystem

- ARM has an exceptionally broad ecosystem of 3rd parties supporting the Cortex-M profile processor family.
- Real-time Operating Systems
 - 26+ of the world's leading vendors
- IDEs and C/C++ compilers
 - 13+ of the world's leading vendors
- Debugger vendors
 - 21+ of the world's leading vendors
- In and these numbers are growing all the time

ARM University Program

The ARM University Program – Preparing Today's Students for Tomorrow's Technology

www.arm.com/university


Enabling Coursework and Research in SoC design, Computer Architecture, Embedded Systems Design, Microprocessors/controllers, Assembly Programming, Operating Systems, Application Development, Robotics, and Mechatronics The World's Leading Semiconductor IP Supplier

ARM

Flagship offering: Lab-in-a-Box (LiB)

- LiB package based on Varieties of Silicon Vendors' boards
 - Efficient Embedded Systems Design and Programming (ARM Cortex M)
 - Package contains certain number of boards, 100 MDK Pro licences, in addition to a complete teaching material from ARM or inspection copy of textbook

Flagship offering: Lab-in-a-Box (LiB)

- LiB package based on Varieties of Silicon Vendors' boards
 - Efficient Embedded Systems Design and Programming (ARM Cortex M)
 - Package contains certain number of boards, 100 MDK Pro licences, in addition to a complete teaching material from ARM or inspection copy of textbook

ARM University Program Lab-in-a-Box					
The Lab-in-a-Box contains:					
100 x floating licenses of ARM/Keil MDK-ARM Pro software tools					
10 x ARM Cortex-M3-based NXP LPC1768 mbed boards NP mbed					
 1 x inspection copy of the textbook "Fast and Effective Embedded Systems Design – Applying the ARM mbed" by Toulson and Wilmshurst 					
Please visit www.arm.com/university/mbed to get information on how to access a full suite of teaching, labs, and lecture material to fully support this Lab-in-a-Box.					
ARM University Program: www.arm.com/university					
mbed community and documentation: www.mbed.org					

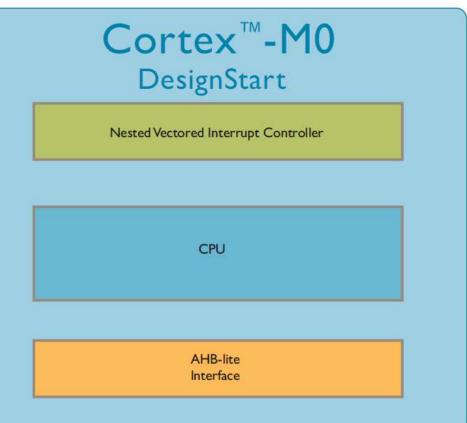
ARM MPD Lab-in-a-box

ARM MPD Lab-in-a-box project

Undergraduate Students

- 12 tutorials for lab-in-a-box project to complete and start promoting by April 2014 to Computer Sciences and Gaming Development Universities worldwide.
- The tutorials are based on Khronos standard OpenGL ES2.0 APIs for ARM Mali GPU devices:
 - 1. Build your 1st Android Application
 - 2. Graphics Set Up
 - 3. Render a Triangle
 - 4. Intro to Shaders I
 - 5. Intro to Shaders II
 - 6. 3D and the Camera
- Wrap up module
 - Unity Game Engine for Mali GPUs

- 7. Textures
- 8. Fonts
- 9. Lighting
- 10. Particle effects
- 11. Shadows
- 12. Bump mapping



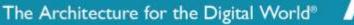
Cortex-M0 DesignStart Processor IP

- A real ARM core for teaching and research!
- Labs based on FPGA board

ARM University Program (AUP) Partners

Workshops &	Educational	ARM University
Events	Videos	Program Partners

The ARM University Program officially partners with the following companies to enable their ARM processor-based technology in academia:



Software Tools for Universities

Teaching Materials and Textbooks

- Free textbook evaluation copies from publishers
- **Teaching and Lab materials** at www.arm.com/university.

AUP Activities – Faculty Workshops

AUP Activities – Seminars/Conferences

AUP Activities – Students Contests

ARM-CYPRESS PSOC 4大学生挑战赛

2013年6月29日—11月16日

AUP Registration

To keep up with AUP offerings and ARM developments overall, register to the ARM University Programme online:

ARM University Program

Preparing Students Today for Tomorrow's Technology

The ARM University Program enables educational use of ARM technology. University courses and labs, student projects, and academic research in embedded systems, microprocessors/controllers, mechatronics, SoC design, computer architecture, and other areas all benefit from using ARM. The program provides a variety of teaching materials, hardware platforms, software development tools, IP, and other resources for educators, students, and researchers.

 Tell us about your ARM-based activities and feedback on our various offerings

The Future in Our Hands

