
www.beningo.com
Contact: jacob@beningo.com

2024 Performance Report

By: Jacob Beningo

Real-Time
Operating System (RTOS)

CONTENTS

03

05

07

09

10

11

13

15

16

17

18

22

26

Introduction

Acknowledgments

The Methodology

Benchmark Results

 Basic Processing

 Cooperative Scheduling

 Preemptive Scheduling

 Memory Allocation

 Message Processing

 Synchronization Processing

Conclusions

Going Further

Appendices

R
T

O
S

 2
0

24
 P

e
rf

o
rm

a
n

c
e

 R
e

p
o

rt

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC. All R ights Reserved. 3

RTOS 2024 Performance Report

Introduction

In today's rapidly evolving landscape of
embedded systems and IoT, devices are
becoming more interconnected and their

roles more sophisticated, especially at the
edge. This evolution has driven an
unprecedented demand for precise and
deterministic timing management, where
even the smallest delays can lead to
significant consequences. The proliferation

of advanced technologies-including sensor
arrays, human-machine interfaces (HMIs),
communication protocols, encryption
algorithms, and artificial intelligence (AI)-

has elevated the importance of an efficient
Real-Time Operating System (RTOS) from a
beneficial asset to a critical necessity.

The market offers over a hundred RTOS
options, ranging from simple, open-source
schedulers to highly specialized, safety-
critical, certified commercial solutions.
However, despite the wide selection, not all
RTOS solutions are created equal, and the

choice of an RTOS can significantly impact
the performance and success of your
application.

31

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC. All R ights Reserved. 4

RTOS 2024 Performance Report

Consider, for example, a low-power
IoT sensor node that operates on a
battery. The device must balance

power consumption with
performance, ensuring it can remain
operational for months or years
without battery replacement. An
efficient RTOS makes a crucial
difference in this scenario: it can

manage the device’s sleep cycles,
wake up the processor only when
necessary, and execute tasks with
minimal energy overhead. In
contrast, an inefficient RTOS might
keep the processor awake longer

than needed, draining the battery
rapidly and reducing the device's
operational lifespan. Such
differences in RTOS efficiency can
determine whether an IoT
deployment is viable or doomed to
fail.

This report represents an in-depth
benchmarking analysis of three
popular open-source RTOSes and
one commercially available RTOS.
We will examine their performance
across key areas that are vital to the

functioning of embedded systems,
including:

• Cooperative Scheduling
• Preemptive Scheduling
• Memory Allocation
• Synchronization Processing

• Message Processing

While performance is just one of
many factors to consider when
selecting an RTOS, (see 7

Characteristics to Consider when
Selecting an RTOS), it is a critical
metric that directly influences your
system's reliability and efficiency. As
the industry continues to trend
toward more complex and

interconnected systems,
understanding the performance
characteristics of an RTOS becomes
essential for ensuring that your
embedded applications can meet the
increasingly demanding

requirements of today's
technological landscape.

In the future, we plan to expand this
study to include additional RTOSes
and delve into the impact of POSIX
APIs on performance. Until then,
enjoy the results we’ve found so far,

and think carefully about how they
may or may not impact how you
design your real-time applications.

Happy Coding,

31

https://www.beningo.com/7-characteristics-to-consider-when-selecting-an-rtos/
https://www.beningo.com/7-characteristics-to-consider-when-selecting-an-rtos/
https://www.beningo.com/7-characteristics-to-consider-when-selecting-an-rtos/

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 5

Acknowledgments

31

RTOS 2024 Performance Report

Accurate and unbiased benchmark data is critical in testing like this. I want to thank
several people for participating and assisting in this RTOS Performance study.

1) Mohammed Billoo from MAB Labs for assisting in Zephyr RTOS benchmarking

and acting as a second set of eyes on the data

2) Jean Labrosse, your review of the draft of this report was instrumental. Your
insightful feedback and thought-provoking questions were key in ensuring the
accuracy and unbiasedness of the results.

3) Bill Lamie from PX5 RTOS, we appreciate the risk you took in providing us with
the PX5 RTOS for testing and comparison. Your courage and trust in our study were

commendable.

4) Shawn Prestridge and Rafael Taubinger from IAR for providing me with an
extended license for IAR-Embedded Workbench for Arm so I could complete this
study.

5) Naymul Hasan, who takes my napkin chicken scratch and half -thought diagrams
and brings them to life with color and visual appeal

"In engineering, accuracy is paramount, but even the
most skilled minds can overlook details. That's why
reviews are essential—ensuring that fresh eyes
scrutinize every design, calculation, and line of code to
eliminate bias and achieve the most reliable, objective
results."

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 6

Trademark Acknowledgments

31

RTOS 2024 Performance Report

• FreeRTOS is a trademark of Amazon Web Services, Inc.

• Zephyr RTOS is a trademark of the Linux Foundation.

• PX5 is a trademark of PX5 RTOS, Inc.

• Eclipse ThreadX is a trademark of Eclipse Foundation.

All other product names, logos, and brands are the property of their respective
owners. Use of these names, logos, and brands does not imply endorsement.

Non-Affiliation Statement

This performance study is conducted independently and is not affiliated with
or endorsed by FreeRTOS (Amazon Web Services, Inc.) , Zephyr RTOS (Linux
Foundation), PX5 (PX5 RTOS, Inc.) , Eclipse ThreadX (Eclipse Foundation), or any

other RTOS provider mentioned in this paper. All findings are based on
objective testing criteria and reflect the results of independent analysis.

Objective Performance Comparison

The performance comparisons presented in this study are based on
independent testing and publicly available data for FreeRTOS, Zephyr RTOS,
PX5, and Eclipse ThreadX (referred to as ThreadX throughout this paper). All

testing criteria are objective and intended for informational purposes only. The
results do not reflect the views or opinions of the RTOS providers and should
be interpreted as an independent analysis.

It's important to note that each RTOS is designed to meet different
requirements and use cases, and the choice of RTOS should be based on the
specific needs of a project. Factors such as resource constraints, real -time

performance, scalability, and ecosystem support vary between systems and
should be carefully evaluated when determining fitness for purpose in any
given application.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 7

RTOS 2024 Performance Report

Our RTOS benchmark analysis was based on a series of tests from the Thread Metric
benchmark suite, formerly offered by Microsoft and now offered by the Eclipse
Foundation. The Thread Metric benchmark suite is under MIT license and can be found

on GitHub here: Thread Metric Benchmark Suite.

The Thread Metric benchmark suite consists of eight tests, one of which is a
calibration test to ensure the platform's operation is similar. For this study, we have
selected the following five Thread Metric RTOS performance tests:

• Cooperative Scheduling
• Preemptive Scheduling
• Memory Allocation
• Synchronization Processing
• Message Passing

Each test is based on total throughput within a 30-second time interval, with higher
throughput indicating a more efficient RTOS.

31

The
Methodology

https://github.com/eclipse-threadx/threadx/tree/master/utility/benchmarks/thread_metric

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 8 31

RTOS 2024 Performance Report

We conducted the analysis on the ST STM32L4 IoT Discovery Node (B-L475E-
IOT01A), equipped with an 80MHz Cortex-M4 processor. Results were
consistent across multiple boards, with variations within a 1% margin. The

repeatability of the tests easily fell within this margin, and in most cases, it was
much better. (Which is what you’d expect from a deterministic RTOS).

The original intent was to compile each RTOS in IAR EWARM and run the tests.
We discovered that Zephyr RTOS was tightly coupled to its build system, and
the time required to set it up with IAR Embedded Workbench for Arm was
prohibit ive. That forced us to make some adjustments.

The RTOS and Thread Metric benchmark code were compiled using GCC
version 12.3 (or similar) . All RTOS C code was optimized for speed with uniform
compilation f lags across all RTOS versions. The specific versions used in this
analysis are:

• FreeRTOS 11.1.0
• PX5 RTOS 5.1.0

• Eclipse ThreadX 6.1.1
• Zephyr 3.7

The RTOSes were left in their default configuration for the STM32L475. The
configuration matters because, for your application, you might use different
configuration sett ings that affect how the RTOS performs. The defaults were
used because they are the most likely settings most embedded system teams

use. Some configurations were adjusted to ensure that the comparisons were
as close to “apples to apples” as possible.

For example, not all RTOSes support argument checking, assertions, or might
have additional checks that are performed in debug builds. We disabled these
features since they would typically be disabled in production, allowing for the
most reliable comparison between RTOSes.

I’ve provided the configuration settings for each RTOS in the appendices so
you can easily see the test conditions. This is important for transparency and
for anyone to reproduce the results.

https://estore.st.com/en/b-l475e-iot01a1-cpn.html
https://estore.st.com/en/b-l475e-iot01a1-cpn.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/tree/V11.1.0
https://px5rtos.com/
https://github.com/eclipse-threadx/threadx
https://github.com/zephyrproject-rtos/zephyr/tree/v3.7.0

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 9

RTOS 2024 Performance Report

In this section, we’ll review the details of each benchmark test and how the RTOSes
performed relative to each. Each section provides the results, with the best -
performing RTOS scaled to 100% and the performance of every other RTOS scaled

based on the percentage of the best-performing RTOS.

We also add some basic commentary so that you can understand the test and what it
means. We point out any interesting information that we discovered along the way as
well.

31

Benchmark
Test Results

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 10

Basic Processing Test

31

RTOS 2024 Performance Report

Benchmark Overview

The Basic Processing Test is a calibration test. It is a single thread incrementing a
counter. It should be nearly the same on every operating system. The calibration

test shows that generic, non-RTOS code ran at the same speed under each RTOS
on the same board with the same compiler. It also lets us know that the settings for
each RTOS are conf igured the same. The results are expected to fall within 1%. Any
significant variat ion may indicate a setup issue or the need to scale the results for a
more accurate comparison.

Benchmark Results:

The calibration results (Basic Processing Test) were nearly identical for all the
RTOSes tested. It averaged 70,782 counts +/- 0.5% over the 30-second interval.

The FreeRTOS basic processing test ran slightly slower than the other RTOSes, but
within a 1% spread between the fastest-running calibration tests. The test gives us
confidence that the compiler, hardware, and RTOSes are set up correctly and that
there are no significant differences in the compiler flags or settings.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 11

Cooperative Scheduling

31

RTOS 2024 Performance Report

Benchmark Overview

Cooperative Scheduling is a scheduling method in which tasks voluntarily yield
control of the CPU to allow other tasks to run. Unlike preemptive scheduling, where

the RTOS can interrupt and switch between tasks based on priority or time slices,
cooperative scheduling relies on each task explicitly giving up the CPU when it has
finished its current operation or reaches a suitable point to allow other tasks to
execute.

The cooperative scheduling benchmark creates five threads at the same priority
level, each voluntarily releasing control in a round-robin fashion. Each thread

increments a counter and then relinquishes the CPU to allow other threads to
execute.

At the end of the test, the counters from each thread are verified. In a deterministic
scheduler, you would expect the counters to all be within a single count of each
other. Once the results are verified, the numbers are summed and presented as the
result of the cooperative scheduling test.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 12 31

RTOS 2024 Performance Report

Benchmark Results

The cooperative scheduling benchmark results can be seen in the image and came
with a few surprises.

The highest-performing RTOS, PX5 RTOS, performed 3.4 times faster than the
slowest, Zephyr. That means for every one time that each thread ran in Zephyr,
each PX5 RTOS thread ran 3.4 times! ThreadX and FreeRTOS both performed ~2.6
times faster than Zephyr.

One interesting discovery about FreeRTOS was that the cooperative scheduler
becomes non-deterministic if you compile it without optimizations. While this does

not impact test results, it’s an important consideration given the number of teams
that compile their code without optimizations enabled! If you use FreeRTOS, make
sure that you are compiling for speed!

Another observation was that using Zephyr’s default configuration, PX5 performs
7.2 times faster than Zephyr! Appendix D gives the configuration values to speed
up Zephyr. They are not default so if you don’t tune your RTOS, it will run slow!

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 13

Preemptive Scheduling

31

RTOS 2024 Performance Report

Benchmark Overview

Preemptive scheduling is a type of task scheduling in which the operating system
can interrupt and suspend a currently running task to allocate CPU time to a

higher-priority task. This approach ensures that critical tasks receive timely
execution, improving responsiveness and system performance.

The test consists of 5 threads that each have a unique priority . Each thread, except
the lowest priority thread, is left in a suspended state. The lowest priority thread
will resume the following highest priority thread. That thread will resume the
following highest priority thread and so on until the highest priority thread

executes.

Each thread will increment its run count and then call thread suspend. Eventually
the processing will return to the lowest priority thread, which is still in the middle of
the thread resume call . Once processing returns to the lowest priority thread, it will
increment its run counter and resume the next highest priority thread again,
starting the whole process again.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 14 31

RTOS 2024 Performance Report

At the end of the test, the counters from each thread are verified. In a deterministic
scheduler, you would expect the counters to all be within a single count of each
other. Once the results are verified, the numbers are summed and presented as the

result of the preemptive scheduling test.

Benchmark Results

The preemptive scheduling benchmark results can be seen in the image and came
with a few surprises.

The highest-performing RTOS, PX5 RTOS, performed 2.4 times faster than the
slowest-performing RTOS, Zephyr. That means for every one time that each thread

ran in Zephyr, each PX5 RTOS thread ran 2.4 t imes! ThreadX came in a close
second but still performed 9.6% slower than PX5 RTOS.

One surprising discovery about FreeRTOS was that the test harness considers the
preemptive scheduler non-deterministic. To indicate a deterministic scheduler, the
counters should all be within a single count of each other. As you can see in the
image below, they are close but not entirely within one.

Depending on your requirements and needs, the effect may be insignificant to your

specific application. It may be more prevalent for systems expected to run non-
stop over long periods without a reset.

I don’t expect this finding to change anyone's use case for FreeRTOS, but it’s stil l
worth mentioning.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 15

Memory Allocation Test

31

RTOS 2024 Performance Report

Benchmark Overview

The RTOS Memory Allocation test determines how efficiently the RTOS allocates and
releases memory. The test consists of a thread allocating a 128-byte block and

releasing it. After the block is released, the thread increments its run counter. The
process then repeats for a 30-second time interval.

Benchmark Results:

The memory allocation benchmark results can be seen in the image above. As usual,
we scale the results based on the fastest and provide you with the percentage of the
quickest that each RTOS scored.

Once again, we find that PX5 RTOS crushes it. However, this time ThreadX is not far
behind, trail ing by only 3.2%. The spread between PX5 RTOS and Zephyr is quite large,
with PX5 RTOS being 5.8 t imes faster than Zephyr!

These results won't mean much for RTOS applications that use stat ic memory
allocation, but quite a few IoT edge devices I see use dynamic memory allocation,
making this metric all the more important.

.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 16

Message Processing

31

RTOS 2024 Performance Report

Benchmark Overview

The Message Processing benchmark determines how efficiently the RTOS can
send and receive messages. The test consists of a thread sending 16-byte

messages to a queue and retrieving the same 16-byte message from the queue.
After the send/receive sequence, the thread increments its counter and repeats for
the 30-second test.

Benchmark Results:

The spread for message processing was narrower than in other tests. ThreadX and
PX5 RTOS were nearly tied for performance, each about two times faster than

Zephyr.

The benchmark is the first, where Zephyr beat out FreeRTOS for the slowest.
Zephyr was about 9.3% faster at processing messages than FreeRTOS.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 17

Synchronization Processing

31

RTOS 2024 Performance Report

Benchmark Overview

The Synchronization Processing test evaluates the performance of synchronizing
threads. It consists of a single thread getting a semaphore and immediately

releasing it. After the get/put cycle, the thread increments its run counter and
repeats the cycle. The counter value is then reported at the end of the 30-second
cycle.

Benchmark Results:

Once again, the PX5 RTOS proved to be the fastest, 2.6 times faster than FreeRTOS.
ThreadX was a close second but still 7.6% slower than the PX5 RTOS. Zephyr

synchronization was about 1.6 times faster than FreeRTOS.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 18

RTOS 2024 Performance Report

RTOS performance is essential for applications that require high performance and for
applications that need to minimize processor cost and/or power consumption. These
considerations should apply to all embedded applications. There is no reason to

unnecessarily increase the device BOM cost because of poor RTOS performance.

In this section, we’ll draw some conclusions from these results. Be warned: How you
configure the RTOS and what settings you enable and disable can affect its
performance! We’ve done our best to create an apples -to-apples comparison, but the
richness of RTOSes features can make this challenging.

Different settings may produce different results and conclusions. However, we are

confident that the settings and results align with how these RTOSes are typically used
and configured in embedded systems.

I would encourage you to use these results with your own tests and requirements to
help guide you in selecting the right RTOS for your application.

31

Conclusions

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 19 31

RTOS 2024 Performance Report

In this paper, we’ve looked at the various benchmarks with respect to the best
performing RTOS, PX5. Below is another way to interpret the results of this
study, normalizing each benchmark for the slowest performer in each

category:

We've drawn several observations and conclusions from this table and our
work with each of these RTOSes.

1. There is a clear distinction between Commercial and Open -Source
Software.

The commercially available PX5 RTOS outperformed the three open -

source RTOSes—in some cases, by as much as 5.8 times faster! This
highlights the adage that "you get what you pay for."

ThreadX, while now open-source, offers performance close to PX5 RTOS
and was once a commercial RTOS before being acquired and open -
sourced by Microsoft. Both PX5 RTOS and ThreadX were developed by Bill
Lamie, a veteran in RTOS development, yet PX5 RTOS continues to edge
out ThreadX in performance.

Although open-source software is often valued for its transparency and
broad community support, this clearly doesn't translate to superior
performance in every case.

Interpreting the Results

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 20 31

RTOS 2024 Performance Report

2. Open-source software is often Toolchain-restricted

 The original plan for this study was to use IAR Embedded Workbench. The
idea was to get the best numbers and clearest comparison under the best

conditions. However, we quickly discovered that Zephyr and another open -
source RTOS we were interested in RT-Thread, would not easily play nice
outside of the toolchains they ship with without significant work.

We opted to use GCC to avoid the pain associated with breaking these
RTOSes free from their build system chains. If you are working with a
commercial product though, what might the costs be if you want to use a

commercial compiler?

We should strive to improve Zephyr's inflexibility with other compilers and
open-source software without boxing itself into a single-build toolchain. As
you’ll see later, the compiler itself can be a dramatic source for improving
performance.

3. GCC isn’t as good as you think

I’ve often seen, and been guilty myself, of stating that compilers today
generate efficient enough code that we don’t need to worry about how you
write or structure your code. That is an incorrect assumption and
statement. It’s false!

During this study and throughout other projects I’ve worked on recently,
I’ve found that GCC, while excellent, doesn’t necessarily produce the most
efficient and best binaries. The problem is that we don’t often have data to

show the difference between an open-source compiler like GCC and a
commercial compiler.

When I switched from using IAR Embedded Workbench to GCC, I had
already collected data for ThreadX, PX5 RTOS, and FreeRTOS using it. So,
after repeating the studies in GCC so that Zephyr could be included, it left
me with benchmark data to compare IAR Embedded Workbench to GCC.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 21 31

RTOS 2024 Performance Report

I took the RTOS with the best results, PX5 RTOS, then took the results for
each test and calculated the IAR/GCC and GCC/IAR results. You can see
the table results below:

 The compiler flags were set identically in both IAR and GCC. As you can
see, the IAR EWARM compiler produced far better results than GCC. It’s not

a consistent across-the-board amount because it depends on the code
being compiled. However, a 20 – 40% performance improvement is a
reasonable range.

 The Cooperative Scheduling test is likely very similar because that test is
beating up the code often written in assembly language. For the Cortex -M,
that is the code in the PendSV handler. For PX5 RTOS, there isn’t anything

for IAR to optimize since that handler is about as efficient as it is going to
get. When you look across RTOS implementations though, you see
variations in efficiency.

In most industry surveys, real-time performance is one of the most crit ical
issues regarding RTOS selection. However, there are other considerations.
Addit ional considerations include licensing, developer training, middleware
support, professional support, and safety certification. That said, RTOS

performance is an essential consideration – which, if ignored, can result in a
more expensive device that struggles to perform its function.

As our results clearly demonstrate, not all RTOS are created equal. Each has
its unique features and solutions to developers' problems. The selection of an
RTOS is a decision that should not be taken lightly. Our findings underscore
the need for a meticulous and careful approach to RTOS selection and

configuration for your applications.

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 22

RTOS 2024 Performance Report

RTOS performance is essential for applications that require high performance and for
applications that need to minimize processor cost and power consumption. These
considerations should apply to all embedded applications. There is no reason to

unnecessarily increase the device BOM cost because of poor RTOS performance.

In time, I want to add other RTOSes to this study to provide a fuller picture of RTOS
performance and the state of the industry. There are several additional RTOSes that
we are looking to add to this study in the future, including:

• RT-Thread
• SEGGERs embOS

• NuttX

With the push to leverage POSIX APIs in embedded applications, we hope also to
perform these tests using POSIX APIs in addition to the native RTOS APIs.

31

Going
Further

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 23

Accelerate your RTOS project—consult with an expert to
design, optimize, and implement real-time systems.

RTOS 2024 Performance Report

Are you struggling with project delays, rising costs, or an RTOS system that doesn’t
scale? We understand the pressure to deliver robust, real-time systems on time and
within budget. Many teams face these challenges, but with the right guidance, you can

overcome them.

Our expert consulting services help accelerate your RTOS project, ensuring your system
is designed for scalability, maintainability, and optimal performance. Whether starting
from scratch or refining an existing design, we’ll help you create an architecture that
meets your immediate needs and supports future growth, saving you money, reducing
delays, and avoiding costly redesigns.

Contact jacob@beningo.com today to see how we can help you bring your RTOS
projects to life.

31

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 24

Level up your RTOS skills—design efficient, scalable
embedded systems with expert-led training

RTOS 2024 Performance Report

Working with RTOS applications often leads to frustrating issues like poor performance,
scalability issues, and debugging headaches. But it doesn’t have to be that way. Our
expert-led training helps you overcome these common challenges by teaching you how

to design RTOS systems that are efficient, scalable, and ready for production.

Whether you're an individual developer looking to sharpen your skills or a team leader
aiming to upskill your engineers, we’ve got you covered. With flexible training options —
on-demand, live online, and customizable team workshops—you can learn how to avoid
the pitfalls of RTOS design and build reliable, robust systems.

For more information on how we can help you level up your skills and streamline your

RTOS development, contact jacob@beningo.com today!

31

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 25

Fast-track your career growth—get the expertise you need to
deliver faster, better, and more reliable firmware.

RTOS 2024 Performance Report

Enhance your skills, streamline your processes, and elevate your architecture. Join my
academy for on-demand, hands-on workshops and cutting-edge development
resources designed to transform your career and keep you ahead of the curve.

What you’ll get:
• Access to over eight hands-on Embedded Software Workshops
• Modernizing Embedded Software Core Courses
• Embedded Software Community Access
• Jacob’s Webinar / Presentation Archive
• Embedded Development Q&A’s with Jacob Beningo

• Embedded Software Development Resources

Learn more and subscribe by clicking here!

31

https://beningo.mykajabi.com/offers/hruoXke2/checkout

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 26

RTOS 2024 Performance Report

PX5 was configured in its default configuration. In this configuration, we had the
following settings configured in px5_user_config.h that could affect performance:

#define PX5_PARAMETER_CHECKING_DISABLE

#define PX5_CANCELLATION_POINTS_DISABLE

These settings brought PX5 more in line with the other open-source RTOSes we
tested. Parameter checking is not standard in most RTOSes. You typically find it in
certified commercial RTOSes like PX5, uC OS-III, etc.

It’s typical to enable these features only during development and disable them for
production.

31

Appendix A
PX5 Settings

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 27

RTOS 2024 Performance Report

ThreadX was configured in its default configuration. In this configuration, we had the
following settings configured tx_port.h. For the tests performed, these should have
had minimal, if any impact:

#define TX_DISABLE_ERROR_CHECKING
#define TX_DISABLE_PREEMPTION_THRESHOLD
#define TX_DISABLE_NOTIFY_CALLBACKS
#define TX_DISABLE_REDUNDANT_CLEARING
#define TX_DISABLE_STACK_FILLING
#define TX_NOT_INTERRUPTABLE

#define TX_TIMER_PROCESS_IN_ISR
#define TX_REACTIVATE_INLINE
#define TX_INLINE_THREAD_RESUME_SUSPEND

31

Appendix B
TheadX
Settings

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 28

RTOS 2024 Performance Report

FreeRTOS was used in its default configuration based on how ST Microelectronics
configures it in their STM32CubeIDE tool. I felt that this configuration was pretty
consistent and standard with the usage I’ve seen in the industry and that would be

used by a wide variety of developers and teams.

I did review the FreeRTOS Customization documentation, that can be found at :

https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/02-
Customization

The default settings were used. The following page showcases the most interesting
settings for this study.

31

Appendix C
FreeRTOS
Settings

https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/02-Customization
https://www.freertos.org/Documentation/02-Kernel/03-Supported-devices/02-Customization

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 29 31

RTOS 2024 Performance Report

#define configUSE_PREEMPTION 1
#define configSUPPORT_STATIC_ALLOCATION 1
#define configSUPPORT_DYNAMIC_ALLOCATION 1
#define configUSE_IDLE_HOOK 0
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ (SystemCoreClock)
#define configTICK_RATE_HZ ((TickType_t)1000)
#define configMAX_PRIORITIES (56)
#define configMINIMAL_STACK_SIZE ((uint16_t)128)
#define configTOTAL_HEAP_SIZE ((size_t)65536)
#define configMAX_TASK_NAME_LEN (16)
#define configUSE_TRACE_FACILITY 1
#define configUSE_16_BIT_TICKS 0
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 8
#define configUSE_RECURSIVE_MUTEXES 1
#define configUSE_COUNTING_SEMAPHORES 1
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 0

#define configMESSAGE_BUFFER_LENGTH_TYPE size_t

#define configUSE_NEWLIB_REENTRANT 1

#define INCLUDE_vTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE_vTaskDelete 1
#define INCLUDE_vTaskCleanUpResources 0
#define INCLUDE_vTaskSuspend 1
#define INCLUDE_vTaskDelayUntil 1
#define INCLUDE_vTaskDelay 1
#define INCLUDE_xTaskGetSchedulerState 1
#define INCLUDE_xTimerPendFunctionCall 1
#define INCLUDE_xQueueGetMutexHolder 1
#define INCLUDE_uxTaskGetStackHighWaterMark 1
#define INCLUDE_xTaskGetCurrentTaskHandle 1
#define INCLUDE_eTaskGetState 1

#define USE_FreeRTOS_HEAP_4

BENINGO EMBEDDED GROUP

Page | of
Website | www.bening o.com Contact | Jacob@beningo.com
Copyright © 2024 Beningo Embedded Group, LLC,. All Rights Reserved. 30

RTOS 2024 Performance Report

Zephyr RTOS was configured in its default configuration, but with some adjustments to
configuration sett ings in order to bring it more inline with the default settings for the
other RTOSes that were tested. In this configuration, we had the following settings

configured in prj.conf:

CONFIG_SPEED_OPTIMIZATIONS=y
CONFIG_TIMESLICING=n
CONFIG_SYS_CLOCK_TICKS_PER_SEC=1000
CONFIG_HEAP_MEM_POOL_SIZE=4096
CONFIG_LOG=n

CONFIG_ASSERT=n
CONFIG_DEBUG_OPTIMIZATIONS=n
CONFIG_RUNTIME_ERROR_CHECKS=n
CONFIG_PM=n

Note: Without these settings, Zephyr performance is reduced by ~50% !

31

Appendix D
Zephyr
Settings

Copyright © 2024 Beningo Embedded Group, LLC.
All Rights Reserved.

| www.beningo.com
| Jacob@beningo.com

Website
Contact

THANK YOU

JacobBeningo Jacob_Beningo beningoembedded

A black
background
with a black
square

Description

Let’s Stay Connected

https://www.youtube.com/@jacobbeningo5068/featured
https://www.linkedin.com/in/jacobbeningo/
https://twitter.com/Jacob_Beningo

	Slide 1: Real-Time Operating System
	Slide 2: CONTENTS
	Slide 3: Introduction
	Slide 4
	Slide 5: Acknowledgments
	Slide 6: Trademark Acknowledgments
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Basic Processing Test
	Slide 11: Cooperative Scheduling
	Slide 12
	Slide 13: Preemptive Scheduling
	Slide 14
	Slide 15: Memory Allocation Test
	Slide 16: Message Processing
	Slide 17: Synchronization Processing
	Slide 18
	Slide 19: Interpreting the Results
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Accelerate your RTOS project—consult with an expert to design, optimize, and implement real-time systems.
	Slide 24: Level up your RTOS skills—design efficient, scalable embedded systems with expert-led training
	Slide 25: Fast-track your career growth—get the expertise you need to deliver faster, better, and more reliable firmware.
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

